SwinStyleformer is a favorable choice for image inversion
- URL: http://arxiv.org/abs/2406.13153v1
- Date: Wed, 19 Jun 2024 02:08:45 GMT
- Title: SwinStyleformer is a favorable choice for image inversion
- Authors: Jiawei Mao, Guangyi Zhao, Xuesong Yin, Yuanqi Chang,
- Abstract summary: This paper proposes the first pure Transformer structure inversion network called SwinStyleformer.
Experiments found that the inversion network with the Transformer backbone could not successfully invert the image.
- Score: 2.8115030277940947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes the first pure Transformer structure inversion network called SwinStyleformer, which can compensate for the shortcomings of the CNNs inversion framework by handling long-range dependencies and learning the global structure of objects. Experiments found that the inversion network with the Transformer backbone could not successfully invert the image. The above phenomena arise from the differences between CNNs and Transformers, such as the self-attention weights favoring image structure ignoring image details compared to convolution, the lack of multi-scale properties of Transformer, and the distribution differences between the latent code extracted by the Transformer and the StyleGAN style vector. To address these differences, we employ the Swin Transformer with a smaller window size as the backbone of the SwinStyleformer to enhance the local detail of the inversion image. Meanwhile, we design a Transformer block based on learnable queries. Compared to the self-attention transformer block, the Transformer block based on learnable queries provides greater adaptability and flexibility, enabling the model to update the attention weights according to specific tasks. Thus, the inversion focus is not limited to the image structure. To further introduce multi-scale properties, we design multi-scale connections in the extraction of feature maps. Multi-scale connections allow the model to gain a comprehensive understanding of the image to avoid loss of detail due to global modeling. Moreover, we propose an inversion discriminator and distribution alignment loss to minimize the distribution differences. Based on the above designs, our SwinStyleformer successfully solves the Transformer's inversion failure issue and demonstrates SOTA performance in image inversion and several related vision tasks.
Related papers
- Image Deblurring by Exploring In-depth Properties of Transformer [86.7039249037193]
We leverage deep features extracted from a pretrained vision transformer (ViT) to encourage recovered images to be sharp without sacrificing the performance measured by the quantitative metrics.
By comparing the transformer features between recovered image and target one, the pretrained transformer provides high-resolution blur-sensitive semantic information.
One regards the features as vectors and computes the discrepancy between representations extracted from recovered image and target one in Euclidean space.
arXiv Detail & Related papers (2023-03-24T14:14:25Z) - SSformer: A Lightweight Transformer for Semantic Segmentation [7.787950060560868]
Swin Transformer set a new record in various vision tasks by using hierarchical architecture and shifted windows.
We design a lightweight yet effective transformer model, called SSformer.
Experimental results show the proposed SSformer yields comparable mIoU performance with state-of-the-art models.
arXiv Detail & Related papers (2022-08-03T12:57:00Z) - Towards Lightweight Transformer via Group-wise Transformation for
Vision-and-Language Tasks [126.33843752332139]
We introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer.
We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets.
Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks.
arXiv Detail & Related papers (2022-04-16T11:30:26Z) - PanFormer: a Transformer Based Model for Pan-sharpening [49.45405879193866]
Pan-sharpening aims at producing a high-resolution (HR) multi-spectral (MS) image from a low-resolution (LR) multi-spectral (MS) image and its corresponding panchromatic (PAN) image acquired by a same satellite.
Inspired by a new fashion in recent deep learning community, we propose a novel Transformer based model for pan-sharpening.
arXiv Detail & Related papers (2022-03-06T09:22:20Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z) - PPT Fusion: Pyramid Patch Transformerfor a Case Study in Image Fusion [37.993611194758195]
We propose a Patch PyramidTransformer(PPT) to address the issues of extracting semantic information from an image.
The experimental results demonstrate its superior performance against the state-of-the-art fusion approaches.
arXiv Detail & Related papers (2021-07-29T13:57:45Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Diverse Image Inpainting with Bidirectional and Autoregressive
Transformers [55.21000775547243]
We propose BAT-Fill, an image inpainting framework with a novel bidirectional autoregressive transformer (BAT)
BAT-Fill inherits the merits of transformers and CNNs in a two-stage manner, which allows to generate high-resolution contents without being constrained by the quadratic complexity of attention in transformers.
arXiv Detail & Related papers (2021-04-26T03:52:27Z) - Incorporating Convolution Designs into Visual Transformers [24.562955955312187]
We propose a new textbfConvolution-enhanced image Transformer (CeiT) which combines the advantages of CNNs in extracting low-level features, strengthening locality, and the advantages of Transformers in establishing long-range dependencies.
Experimental results on ImageNet and seven downstream tasks show the effectiveness and generalization ability of CeiT compared with previous Transformers and state-of-the-art CNNs, without requiring a large amount of training data and extra CNN teachers.
arXiv Detail & Related papers (2021-03-22T13:16:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.