MC-MKE: A Fine-Grained Multimodal Knowledge Editing Benchmark Emphasizing Modality Consistency
- URL: http://arxiv.org/abs/2406.13219v2
- Date: Wed, 30 Oct 2024 08:04:59 GMT
- Title: MC-MKE: A Fine-Grained Multimodal Knowledge Editing Benchmark Emphasizing Modality Consistency
- Authors: Junzhe Zhang, Huixuan Zhang, Xunjian Yin, Baizhou Huang, Xu Zhang, Xinyu Hu, Xiaojun Wan,
- Abstract summary: Multimodal large language models (MLLMs) are prone to non-factual or outdated knowledge issues.
We decompose multimodal knowledge into its visual and textual components.
We present MC-MKE, a fine-grained Multimodal Knowledge Editing benchmark.
- Score: 50.40318712497071
- License:
- Abstract: Multimodal large language models (MLLMs) are prone to non-factual or outdated knowledge issues, which can manifest as misreading and misrecognition errors due to the complexity of multimodal knowledge. Previous benchmarks have not systematically analyzed the performance of editing methods in correcting these two error types. To better represent and correct these errors, we decompose multimodal knowledge into its visual and textual components. Different error types correspond to different editing formats, which edit distinct parts of the multimodal knowledge. We present MC-MKE, a fine-grained Multimodal Knowledge Editing benchmark emphasizing Modality Consistency. Our benchmark facilitates independent correction of misreading and misrecognition errors by editing the corresponding knowledge component. We evaluate four multimodal knowledge editing methods on MC-MKE, revealing their limitations, particularly in terms of modality consistency. Our work highlights the challenges posed by multimodal knowledge editing and motivates further research in developing effective techniques for this task.
Related papers
- Uncovering Overfitting in Large Language Model Editing [35.55260822503773]
We identify and investigate the phenomenon of Editing Overfit, where edited models assign disproportionately high probabilities to the edit target.
We propose a new plug-and-play strategy called Learn to Inference (LTI), which introduce a Multi-stage Inference Constraint module to guide the edited models in recalling new knowledge.
arXiv Detail & Related papers (2024-10-10T11:09:00Z) - Locate-then-edit for Multi-hop Factual Recall under Knowledge Editing [7.9525115640025055]
locate-then-edit paradigm has shown significant promise for knowledge editing.
Previous methods struggle with multi-hop factual recall tasks involving newly edited knowledge.
We propose IFMET, a novel locate-then-edit approach designed to edit both shallow and deep layers.
arXiv Detail & Related papers (2024-10-08T20:12:11Z) - LLM-Based Multi-Hop Question Answering with Knowledge Graph Integration in Evolving Environments [35.3938477255058]
This paper introduces Graph Memory-based Editing for Large Language Models (GMeLLo)
GMeLLo merges the explicit knowledge representation of Knowledge Graphs with the linguistic flexibility of Large Language Models.
Our results show that GMeLLo significantly surpasses current state-of-the-art knowledge editing methods in the multi-hop question answering benchmark, MQuAKE.
arXiv Detail & Related papers (2024-08-28T16:15:45Z) - Cross-Lingual Multi-Hop Knowledge Editing -- Benchmarks, Analysis and a Simple Contrastive Learning based Approach [53.028586843468915]
We propose the Cross-Lingual Multi-Hop Knowledge Editing paradigm, for measuring and analyzing the performance of various SoTA knowledge editing techniques in a cross-lingual setup.
Specifically, we create a parallel cross-lingual benchmark, CROLIN-MQUAKE for measuring the knowledge editing capabilities.
Following this, we propose a significantly improved system for cross-lingual multi-hop knowledge editing, CLEVER-CKE.
arXiv Detail & Related papers (2024-07-14T17:18:16Z) - Multiple Heads are Better than One: Mixture of Modality Knowledge Experts for Entity Representation Learning [51.80447197290866]
Learning high-quality multi-modal entity representations is an important goal of multi-modal knowledge graph (MMKG) representation learning.
Existing methods focus on crafting elegant entity-wise multi-modal fusion strategies.
We introduce a novel framework with Mixture of Modality Knowledge experts (MoMoK) to learn adaptive multi-modal entity representations.
arXiv Detail & Related papers (2024-05-27T06:36:17Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - PokeMQA: Programmable knowledge editing for Multi-hop Question Answering [46.80110170981976]
Multi-hop question answering (MQA) is one of the challenging tasks to evaluate machine's comprehension and reasoning abilities.
We propose a framework, Programmable knowledge editing for Multi-hop Question Answering (MQA)
Specifically, we prompt LLMs to decompose knowledge-augmented multi-hop question, while interacting with a detached trainable scope detector to modulate LLMs behavior depending on external conflict signal.
arXiv Detail & Related papers (2023-12-23T08:32:13Z) - Can We Edit Multimodal Large Language Models? [38.292574747632635]
We construct a new benchmark, dubbed MMEdit, for editing multimodal LLMs.
We conduct comprehensive experiments involving various model editing baselines and analyze the impact of editing different components.
arXiv Detail & Related papers (2023-10-12T16:32:44Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
This paper embarks on a deep exploration of the problems, methods, and opportunities related to model editing for LLMs.
We provide an exhaustive overview of the task definition and challenges associated with model editing, along with an in-depth empirical analysis of the most progressive methods currently at our disposal.
Our objective is to provide valuable insights into the effectiveness and feasibility of each editing technique, thereby assisting the community in making informed decisions on the selection of the most appropriate method for a specific task or context.
arXiv Detail & Related papers (2023-05-22T16:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.