ECAFormer: Low-light Image Enhancement using Cross Attention
- URL: http://arxiv.org/abs/2406.13281v1
- Date: Wed, 19 Jun 2024 07:21:31 GMT
- Title: ECAFormer: Low-light Image Enhancement using Cross Attention
- Authors: Yudi Ruan, Hao Ma, Weikai Li, Xiao Wang,
- Abstract summary: ECAFormer is a novel network that utilizes Dual Multi-head Self Attention (DMSA) to enhance both visual and semantic features across scales.
Our experimental validation on renowned low-illumination datasets, including SID and LOL, and additional tests on dark road scenarios.
- Score: 11.554554006307836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-light image enhancement (LLIE) is vital for autonomous driving. Despite the importance, existing LLIE methods often prioritize robustness in overall brightness adjustment, which can come at the expense of detail preservation. To overcome this limitation,we propose the Hierarchical Mutual Enhancement via Cross-Attention transformer (ECAFormer), a novel network that utilizes Dual Multi-head Self Attention (DMSA) to enhance both visual and semantic features across scales, significantly preserving details during the process. The cross-attention mechanism in ECAFormer not only improves upon traditional enhancement techniques but also excels in maintaining a balance between global brightness adjustment and local detail retention. Our extensive experimental validation on renowned low-illumination datasets, including SID and LOL, and additional tests on dark road scenarios. or performance over existing methods in terms of illumination enhancement and noise reduction, while also optimizing computational complexity and parameter count, further boosting SSIM and PSNR metrics. Our project is available at https://github.com/ruanyudi/ECAFormer.
Related papers
- Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention [59.19580789952102]
This paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks.
MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization.
MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations.
arXiv Detail & Related papers (2025-01-18T11:57:20Z) - Hierarchical Information Flow for Generalized Efficient Image Restoration [108.83750852785582]
We propose a hierarchical information flow mechanism for image restoration, dubbed Hi-IR.
Hi-IR constructs a hierarchical information tree representing the degraded image across three levels.
In seven common image restoration tasks, Hi-IR achieves its effectiveness and generalizability.
arXiv Detail & Related papers (2024-11-27T18:30:08Z) - HiTSR: A Hierarchical Transformer for Reference-based Super-Resolution [6.546896650921257]
We propose HiTSR, a hierarchical transformer model for reference-based image super-resolution.
We streamline the architecture and training pipeline by incorporating the double attention block from GAN literature.
Our model demonstrates superior performance across three datasets including SUN80, Urban100, and Manga109.
arXiv Detail & Related papers (2024-08-30T01:16:29Z) - Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
We introduce a Multimodal Alignment and Reconstruction Network (MARNet) to enhance the model's resistance to visual noise.
MARNet includes a cross-modal diffusion reconstruction module for smoothly and stably blending information across different domains.
Experiments conducted on two benchmark datasets, Vireo-Food172 and Ingredient-101, demonstrate that MARNet effectively improves the quality of image information extracted by the model.
arXiv Detail & Related papers (2024-07-26T16:30:18Z) - Towards Self-Supervised FG-SBIR with Unified Sample Feature Alignment and Multi-Scale Token Recycling [11.129453244307369]
FG-SBIR aims to minimize the distance between sketches and corresponding images in the embedding space.
We propose an effective approach to narrow the gap between the two domains.
It mainly facilitates unified mutual information sharing both intra- and inter-samples.
arXiv Detail & Related papers (2024-06-17T13:49:12Z) - A Semantic-Aware and Multi-Guided Network for Infrared-Visible Image Fusion [41.34335755315773]
Multi-modality image fusion aims at fusing specific-modality and shared-modality information from two source images.
We propose a three-branch encoder-decoder architecture along with corresponding fusion layers as the fusion strategy.
Our method has obtained competitive results compared with state-of-the-art methods in visible/infrared image fusion and medical image fusion tasks.
arXiv Detail & Related papers (2024-06-11T09:32:40Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - HAT: Hybrid Attention Transformer for Image Restoration [61.74223315807691]
Transformer-based methods have shown impressive performance in image restoration tasks, such as image super-resolution and denoising.
We propose a new Hybrid Attention Transformer (HAT) to activate more input pixels for better restoration.
Our HAT achieves state-of-the-art performance both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-09-11T05:17:55Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
Multi-exposure image fusion (MEF) has emerged as a prominent solution to address the limitations of digital imaging in representing varied exposure levels.
This paper presents a Hybrid-Supervised Dual-Search approach for MEF, dubbed HSDS-MEF, which introduces a bi-level optimization search scheme for automatic design of both network structures and loss functions.
arXiv Detail & Related papers (2023-09-03T08:07:26Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
We propose a novel Mutual Information-driven Triple interaction Network (MITNet) for image dehazing.
The first stage, named amplitude-guided haze removal, aims to recover the amplitude spectrum of the hazy images for haze removal.
The second stage, named phase-guided structure refined, devotes to learning the transformation and refinement of the phase spectrum.
arXiv Detail & Related papers (2023-08-14T08:23:58Z) - SufrinNet: Toward Sufficient Cross-View Interaction for Stereo Image
Enhancement in The Dark [119.01585302856103]
Low-light stereo image enhancement (LLSIE) is a relatively new task to enhance the quality of visually unpleasant stereo images captured in dark conditions.
Current methods clearly suffer from two shortages: 1) insufficient cross-view interaction; 2) lacking long-range dependency for intra-view learning.
We propose a novel LLSIE model, termed underlineSufficient Cunderlineross-View underlineInteraction Network (SufrinNet)
arXiv Detail & Related papers (2022-11-02T04:01:30Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.