Multimodal MRI Accurately Identifies Amyloid Status in Unbalanced Cohorts in Alzheimer's Disease Continuum
- URL: http://arxiv.org/abs/2406.13305v2
- Date: Mon, 14 Oct 2024 17:14:58 GMT
- Title: Multimodal MRI Accurately Identifies Amyloid Status in Unbalanced Cohorts in Alzheimer's Disease Continuum
- Authors: Giorgio Dolci, Charles A. Ellis, Federica Cruciani, Lorenza Brusini, Anees Abrol, Ilaria Boscolo Galazzo, Gloria Menegaz, Vince D. Calhoun,
- Abstract summary: Amyloid-$beta$ plaques and hyperated tau proteins are neuropathological hallmarks of Alzheimer's disease.
We aim at capturing the A$beta$ positivity status in an unbalanced cohort enclosing subjects at different disease stages.
- Score: 13.220436208437576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Amyloid-$\beta$ (A$\beta$) plaques in conjunction with hyperphosphorylated tau proteins in the form of neurofibrillary tangles are the two neuropathological hallmarks of Alzheimer's disease. It is well-known that the identification of individuals with A$\beta$ positivity could enable early diagnosis. In this work, we aim at capturing the A$\beta$ positivity status in an unbalanced cohort enclosing subjects at different disease stages, exploiting the underlying structural and connectivity disease-induced modulations as revealed by structural, functional, and diffusion MRI. Of note, due to the unbalanced cohort, the outcomes may be guided by those factors rather than amyloid accumulation. The partial views provided by each modality are integrated in the model allowing to take full advantage of their complementarity in encoding the effects of the A$\beta$ accumulation, leading to an accuracy of $0.762\pm0.04$. The specificity of the information brought by each modality is assessed by \textit{post-hoc} explainability analysis (guided backpropagation), highlighting the underlying structural and functional changes. Noteworthy, well-established biomarker key regions related to A$\beta$ deposition could be identified by all modalities, including the hippocampus, thalamus, precuneus, and cingulate gyrus, witnessing in favor of the reliability of the method as well as its potential in shading light on modality-specific possibly unknown A$\beta$ deposition signatures.
Related papers
- Flexible and Explainable Graph Analysis for EEG-based Alzheimer's Disease Classification [11.038002513199299]
Alzheimer's Disease is a progressive neurological disorder that is one of the most common forms of dementia.
Recent research has utilized electroencephalography (EEG) data to identify biomarkers that distinguish Alzheimer's Disease patients from healthy individuals.
arXiv Detail & Related papers (2025-04-02T03:29:12Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease.
We present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention.
Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance.
arXiv Detail & Related papers (2025-03-01T07:02:30Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
We introduce a rare disease question-answering (ReDis-QA) dataset to evaluate the performance of Large Language Models (LLMs) in diagnosing rare diseases.
We collected 1360 high-quality question-answer pairs within the ReDis-QA dataset, covering 205 rare diseases.
We then benchmarked several open-source LLMs, revealing that diagnosing rare diseases remains a significant challenge for these models.
Experiment results demonstrate that ReCOP can effectively improve the accuracy of LLMs on the ReDis-QA dataset by an average of 8%.
arXiv Detail & Related papers (2024-08-15T21:09:09Z) - Leveraging Bi-Focal Perspectives and Granular Feature Integration for Accurate Reliable Early Alzheimer's Detection [0.0]
Alzheimer's disease (AD) is the most common neurodegeneration, annually diagnosed in millions of patients.
Traditional CNNs can extract a good amount of low-level information in an image but fail to extract high-level minuscule particles.
We propose a novel Granular Feature Integration method to combine information extraction at different scales combined with an efficient information flow.
arXiv Detail & Related papers (2024-07-15T17:22:16Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
Alzheimer's disease (AD) is the most prevalent form of dementia with a progressive decline in cognitive abilities.
We leveraged structural and functional MRI to investigate the disease-induced GM and functional network connectivity changes.
We propose a novel DL-based classification framework where a generative module employing Cycle GAN was adopted for imputing missing data.
arXiv Detail & Related papers (2024-06-19T07:31:47Z) - Reliable Multimodality Eye Disease Screening via Mixture of Student's t
Distributions [49.4545260500952]
We introduce a novel multimodality evidential fusion pipeline for eye disease screening, EyeMoSt.
Our model estimates both local uncertainty for unimodality and global uncertainty for the fusion modality to produce reliable classification results.
Our experimental findings on both public and in-house datasets show that our model is more reliable than current methods.
arXiv Detail & Related papers (2023-03-17T06:18:16Z) - Domain Invariant Model with Graph Convolutional Network for Mammogram
Classification [49.691629817104925]
We propose a novel framework, namely Domain Invariant Model with Graph Convolutional Network (DIM-GCN)
We first propose a Bayesian network, which explicitly decomposes the latent variables into disease-related and other disease-irrelevant parts that are provable to be disentangled from each other.
To better capture the macroscopic features, we leverage the observed clinical attributes as a goal for reconstruction, via Graph Convolutional Network (GCN)
arXiv Detail & Related papers (2022-04-21T08:23:44Z) - Multimodal Representations Learning and Adversarial Hypergraph Fusion
for Early Alzheimer's Disease Prediction [30.99183477161096]
We propose a novel representation learning and adversarial hypergraph fusion framework for Alzheimer's disease diagnosis.
Our model achieves superior performance on Alzheimer's disease detection compared with other related models.
arXiv Detail & Related papers (2021-07-21T08:08:05Z) - Disentangling brain heterogeneity via semi-supervised deep-learning and
MRI: dimensional representations of Alzheimer's Disease [2.7724592931061016]
We describe Smile-GAN, a novel semi-supervised deep-clustering method, which dissects neuroanatomical heterogeneity.
Smile-GAN identified 4 neurodegenerative patterns/axes, including P1, normal anatomy and highest cognitive performance; P2, mild/diffuse atrophy and more prominent executive dysfunction; P3, focal medial temporal atrophy and relatively greater memory impairment; P4, advanced neurodegeneration.
arXiv Detail & Related papers (2021-02-24T22:09:16Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Image analysis for Alzheimer's disease prediction: Embracing
pathological hallmarks for model architecture design [8.583436410810204]
Alzheimer's disease (AD) is associated with local (e.g. brain tissue atrophy) and global brain changes (loss of cerebral connectivity)
We introduce a novel, highly-scalable approach that simultaneously captures $textitlocal$ and $textitglobal$ changes in the diseased brain.
It is based on a neural network architecture that combines patch-based, high-resolution 3D-CNNs with global topological features.
arXiv Detail & Related papers (2020-11-12T17:42:49Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.