$su(d)$-squeezing and many-body entanglement geometry in finite-dimensional systems
- URL: http://arxiv.org/abs/2406.13338v1
- Date: Wed, 19 Jun 2024 08:40:11 GMT
- Title: $su(d)$-squeezing and many-body entanglement geometry in finite-dimensional systems
- Authors: Giuseppe Vitagliano, Otfried Gühne, Géza Tóth,
- Abstract summary: Generalizing the well-known spin-squeezing inequalities, we study the relation between squeezing of collective $N$-particle $su(d)$ operators and many-body entanglement geometry in multi-particle systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalizing the well-known spin-squeezing inequalities, we study the relation between squeezing of collective $N$-particle $su(d)$ operators and many-body entanglement geometry in multi-particle systems. For that aim, we define the set of pseudo-separable states, which are mixtures of products of single-particle states that lie in the $(d^2-1)$-dimensional Bloch sphere but are not necessarily positive semidefinite. We obtain a set of necessary conditions for states of $N$ qudits to be of the above form. Any state that violates these conditions is entangled. We also define a corresponding $su(d)$-squeezing parameter that can be used to detect entanglement in large particle ensembles. Geometrically, this set of conditions defines a convex set of points in the space of first and second moments of the collective $N$-particle $su(d)$ operators. We prove that, in the limit $N\gg 1$, such set is filled by pseudo-separable states, while any state corresponding to a point outside of this set is necessarily entangled. We also study states that are detected by these inequalities: We show that states with a bosonic symmetry are detected if and only if the two-body reduced state violates the positive partial transpose (PPT) criterion. On the other hand, highly mixed states states close to the $su(d)$ singlet are detected which have a separable two-body reduced state and are also PPT with respect to all possible bipartitions. We also provide numerical examples of thermal equilibrium states that are detected by our set of inequalities, comparing the spin-squeezing inequalities with the $su(3)$-squeezing inequalities.
Related papers
- Quantifying multipartite quantum states by ($k+1$)-partite entanglement measures [2.150800093140658]
We put forward two families of entanglement measures termed $q$-$(k+1)$-PE concurrence $(q>1)$ and $alpha$-$(k+1)$-PE concurrence $(0leqalpha1)$.
We also propose two alternative kinds of entanglement measures, named $q$-$(k+1)$-GPE concurrence $(q>1)$ and $alpha$-$(k+1)$-GPE concurrence $(0leqalpha1)$.
arXiv Detail & Related papers (2024-04-23T13:19:17Z) - Conformal geometry from entanglement [14.735587711294299]
We identify a quantum information-theoretic mechanism by which the conformal geometry emerges at the gapless edge of a 2+1D quantum many-body system.
We show that stationarity of $mathfrakc_mathrmtot$ is equivalent to a vector fixed-point equation involving $eta$, making our assumption locally checkable.
arXiv Detail & Related papers (2024-04-04T18:00:03Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Pseudorandom and Pseudoentangled States from Subset States [49.74460522523316]
A subset state with respect to $S$, a subset of the computational basis, is [ frac1sqrt|S|sum_iin S |irangle.
We show that for any fixed subset size $|S|=s$ such that $s = 2n/omega(mathrmpoly(n))$ and $s=omega(mathrmpoly(n))$, a random subset state is information-theoretically indistinguishable from a Haar random state even provided
arXiv Detail & Related papers (2023-12-23T15:52:46Z) - Parameterized multipartite entanglement measures [2.4172837625375]
We present two types of entanglement measures in $n$-partite systems, $q$-$k$-ME concurrence $(qgeq2,2leq kleq n)$ and $alpha$-$k$-ME concurrence $(0leqalphaleqfrac12,2leq kleq n)$.
Rigorous proofs show that the proposed $k$-nonseparable measures satisfy all the requirements for being an entanglement measure.
arXiv Detail & Related papers (2023-08-31T01:58:47Z) - Constructions of $k$-uniform states in heterogeneous systems [65.63939256159891]
We present two general methods to construct $k$-uniform states in the heterogeneous systems for general $k$.
We can produce many new $k$-uniform states such that the local dimension of each subsystem can be a prime power.
arXiv Detail & Related papers (2023-05-22T06:58:16Z) - Bound Entanglement of Bell Diagonal Pairs of Qutrits and Ququarts: A
Comparison [0.06091702876917279]
We classify Bell diagonal bipartite qudits with positive partial transposition (PPT) as entangled or separable.
We estimate the volumes of separable and free and bound entangled states.
arXiv Detail & Related papers (2022-09-30T06:58:27Z) - Conditions for realizing one-point interactions from a multi-layer
structure model [77.34726150561087]
A heterostructure composed of $N$ parallel homogeneous layers is studied in the limit as their widths shrink to zero.
The problem is investigated in one dimension and the piecewise constant potential in the Schr"odinger equation is given.
arXiv Detail & Related papers (2021-12-15T22:30:39Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Scattering data and bound states of a squeezed double-layer structure [77.34726150561087]
A structure composed of two parallel homogeneous layers is studied in the limit as their widths $l_j$ and $l_j$, and the distance between them $r$ shrinks to zero simultaneously.
The existence of non-trivial bound states is proven in the squeezing limit, including the particular example of the squeezed potential in the form of the derivative of Dirac's delta function.
The scenario how a single bound state survives in the squeezed system from a finite number of bound states in the finite system is described in detail.
arXiv Detail & Related papers (2020-11-23T14:40:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.