Certification for Differentially Private Prediction in Gradient-Based Training
- URL: http://arxiv.org/abs/2406.13433v2
- Date: Wed, 30 Oct 2024 16:40:19 GMT
- Title: Certification for Differentially Private Prediction in Gradient-Based Training
- Authors: Matthew Wicker, Philip Sosnin, Igor Shilov, Adrianna Janik, Mark N. Müller, Yves-Alexandre de Montjoye, Adrian Weller, Calvin Tsay,
- Abstract summary: We use convex relaxation and bound propagation to compute a provable upper-bound for the local and smooth sensitivity of a prediction.
This bound allows us to reduce the magnitude of noise added or improve privacy accounting in the private prediction setting.
- Score: 36.686002369773014
- License:
- Abstract: Differential privacy upper-bounds the information leakage of machine learning models, yet providing meaningful privacy guarantees has proven to be challenging in practice. The private prediction setting where model outputs are privatized is being investigated as an alternate way to provide formal guarantees at prediction time. Most current private prediction algorithms, however, rely on global sensitivity for noise calibration, which often results in large amounts of noise being added to the predictions. Data-specific noise calibration, such as smooth sensitivity, could significantly reduce the amount of noise added, but were so far infeasible to compute exactly for modern machine learning models. In this work we provide a novel and practical approach based on convex relaxation and bound propagation to compute a provable upper-bound for the local and smooth sensitivity of a prediction. This bound allows us to reduce the magnitude of noise added or improve privacy accounting in the private prediction setting. We validate our framework on datasets from financial services, medical image classification, and natural language processing and across models and find our approach to reduce the noise added by up to order of magnitude.
Related papers
- Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Adaptive Differential Privacy in Federated Learning: A Priority-Based
Approach [0.0]
Federated learning (FL) develops global models without direct access to local datasets.
DP offers a framework that gives a privacy guarantee by adding certain amounts of noise to parameters.
We propose adaptive noise addition in FL which decides the value of injected noise based on features' relative importance.
arXiv Detail & Related papers (2024-01-04T03:01:15Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
We propose simulation-based inference methods from privacy-protected datasets.
We illustrate our methods on discrete time-series data under an infectious disease model and with ordinary linear regression models.
arXiv Detail & Related papers (2023-10-19T14:34:17Z) - Propagating Variational Model Uncertainty for Bioacoustic Call Label
Smoothing [15.929064190849665]
We focus on using the predictive uncertainty signal calculated by Bayesian neural networks to guide learning in the self-same task the model is being trained on.
Not opting for costly Monte Carlo sampling of weights, we propagate the approximate hidden variance in an end-to-end manner.
We show that, through the explicit usage of the uncertainty in the loss calculation, the variational model is led to improved predictive and calibration performance.
arXiv Detail & Related papers (2022-10-19T13:04:26Z) - Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy
Constraints [53.01656650117495]
There is a disconnect between how researchers and practitioners handle privacy-utility tradeoffs.
Brownian mechanism works by first adding Gaussian noise of high variance corresponding to the final point of a simulated Brownian motion.
We complement our Brownian mechanism with ReducedAboveThreshold, a generalization of the classical AboveThreshold algorithm.
arXiv Detail & Related papers (2022-06-15T01:43:37Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints.
We also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets.
arXiv Detail & Related papers (2020-08-21T18:43:37Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
Generative adversarial network (GAN) has attracted increasing attention recently owing to its impressive ability to generate realistic samples with high privacy protection.
However, when GANs are applied on sensitive or private training examples, such as medical or financial records, it is still probable to divulge individuals' sensitive and private information.
We propose a R'enyi-differentially private-GAN (RDP-GAN), which achieves differential privacy (DP) in a GAN by carefully adding random noises on the value of the loss function during training.
arXiv Detail & Related papers (2020-07-04T09:51:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.