Scalable unsupervised alignment of general metric and non-metric structures
- URL: http://arxiv.org/abs/2406.13507v1
- Date: Wed, 19 Jun 2024 12:54:03 GMT
- Title: Scalable unsupervised alignment of general metric and non-metric structures
- Authors: Sanketh Vedula, Valentino Maiorca, Lorenzo Basile, Francesco Locatello, Alex Bronstein,
- Abstract summary: Aligning data from different domains is a fundamental problem in machine learning with broad applications across very different areas.
We learn a related well-scalable linear assignment problem (LAP) whose solution is also a minimizer of the quadratic assignment problem (QAP)
We evaluate our approach on synthetic and real datasets from single-cell multiomics and neural latent spaces.
- Score: 21.29255788365408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aligning data from different domains is a fundamental problem in machine learning with broad applications across very different areas, most notably aligning experimental readouts in single-cell multiomics. Mathematically, this problem can be formulated as the minimization of disagreement of pair-wise quantities such as distances and is related to the Gromov-Hausdorff and Gromov-Wasserstein distances. Computationally, it is a quadratic assignment problem (QAP) that is known to be NP-hard. Prior works attempted to solve the QAP directly with entropic or low-rank regularization on the permutation, which is computationally tractable only for modestly-sized inputs, and encode only limited inductive bias related to the domains being aligned. We consider the alignment of metric structures formulated as a discrete Gromov-Wasserstein problem and instead of solving the QAP directly, we propose to learn a related well-scalable linear assignment problem (LAP) whose solution is also a minimizer of the QAP. We also show a flexible extension of the proposed framework to general non-metric dissimilarities through differentiable ranks. We extensively evaluate our approach on synthetic and real datasets from single-cell multiomics and neural latent spaces, achieving state-of-the-art performance while being conceptually and computationally simple.
Related papers
- Globally solving the Gromov-Wasserstein problem for point clouds in low
dimensional Euclidean spaces [5.534626267734822]
This paper presents a framework for computing the Gromov-Wasserstein problem between two sets of points in low dimensional spaces.
It can be used to quantify the similarity between two formations or shapes, a common problem in AI and machine learning.
arXiv Detail & Related papers (2023-07-18T08:20:56Z) - Sparse Polynomial Optimization: Theory and Practice [5.27013884159732]
Book presents several efforts to tackle this challenge with important scientific implications.
It provides alternative optimization schemes that scale well in terms of computational complexity.
We present sparsity-exploiting hierarchies of relaxations, for either unconstrained or constrained problems.
arXiv Detail & Related papers (2022-08-23T18:56:05Z) - Tensor Completion with Provable Consistency and Fairness Guarantees for
Recommender Systems [5.099537069575897]
We introduce a new consistency-based approach for defining and solving nonnegative/positive matrix and tensor completion problems.
We show that a single property/constraint: preserving unit-scale consistency, guarantees the existence of both a solution and, under relatively weak support assumptions, uniqueness.
arXiv Detail & Related papers (2022-04-04T19:42:46Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - High-dimensional separability for one- and few-shot learning [58.8599521537]
This work is driven by a practical question, corrections of Artificial Intelligence (AI) errors.
Special external devices, correctors, are developed. They should provide quick and non-iterative system fix without modification of a legacy AI system.
New multi-correctors of AI systems are presented and illustrated with examples of predicting errors and learning new classes of objects by a deep convolutional neural network.
arXiv Detail & Related papers (2021-06-28T14:58:14Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
This paper presents a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifold.
We show that the proposed NN solver can robustly generalize the PDE on new data points with errors that are almost identical to generalizations on new data points.
arXiv Detail & Related papers (2021-06-12T03:55:15Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Communication-efficient distributed eigenspace estimation [31.69089186688224]
We develop a communication-efficient distributed algorithm for computing the leading invariant subspace of a data matrix.
Our algorithm uses a novel alignment scheme that minimizes the Procrustean distance between local solutions and a reference solution.
We show that our algorithm achieves a similar error rate to that of a centralized estimator.
arXiv Detail & Related papers (2020-09-05T02:11:22Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.