You can't handle the (dirty) truth: Data-centric insights improve pseudo-labeling
- URL: http://arxiv.org/abs/2406.13733v1
- Date: Wed, 19 Jun 2024 17:58:40 GMT
- Title: You can't handle the (dirty) truth: Data-centric insights improve pseudo-labeling
- Authors: Nabeel Seedat, Nicolas Huynh, Fergus Imrie, Mihaela van der Schaar,
- Abstract summary: We show the importance of investigating labeled data quality to improve any pseudo-labeling method.
Specifically, we introduce a novel data characterization and selection framework called DIPS to extend pseudo-labeling.
We demonstrate the applicability and impact of DIPS for various pseudo-labeling methods across an extensive range of real-world datasets.
- Score: 60.27812493442062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pseudo-labeling is a popular semi-supervised learning technique to leverage unlabeled data when labeled samples are scarce. The generation and selection of pseudo-labels heavily rely on labeled data. Existing approaches implicitly assume that the labeled data is gold standard and 'perfect'. However, this can be violated in reality with issues such as mislabeling or ambiguity. We address this overlooked aspect and show the importance of investigating labeled data quality to improve any pseudo-labeling method. Specifically, we introduce a novel data characterization and selection framework called DIPS to extend pseudo-labeling. We select useful labeled and pseudo-labeled samples via analysis of learning dynamics. We demonstrate the applicability and impact of DIPS for various pseudo-labeling methods across an extensive range of real-world tabular and image datasets. Additionally, DIPS improves data efficiency and reduces the performance distinctions between different pseudo-labelers. Overall, we highlight the significant benefits of a data-centric rethinking of pseudo-labeling in real-world settings.
Related papers
- Deep Active Learning with Manifold-preserving Trajectory Sampling [2.0717982775472206]
Active learning (AL) is for optimizing the selection of unlabeled data for annotation (labeling)
Existing deep AL methods arguably suffer from bias incurred by clabeled data, which takes a much lower percentage than unlabeled data in AL context.
We propose a novel method, namely Manifold-Preserving Trajectory Sampling (MPTS), aiming to enforce the feature space learned from labeled data to represent a more accurate manifold.
arXiv Detail & Related papers (2024-10-21T03:04:09Z) - Candidate Pseudolabel Learning: Enhancing Vision-Language Models by Prompt Tuning with Unlabeled Data [9.132277138594652]
We propose a Candidate Pseudolabel Learning method to fine-tune vision-language models with abundant unlabeled data.
Our method can result in better performance in true label inclusion and class-balanced instance selection.
arXiv Detail & Related papers (2024-06-15T04:50:20Z) - FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness
for Semi-Supervised Learning [73.13448439554497]
Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data.
Most SSL methods are commonly based on instance-wise consistency between different data transformations.
We propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets.
arXiv Detail & Related papers (2023-10-25T06:57:59Z) - Towards Imbalanced Large Scale Multi-label Classification with Partially
Annotated Labels [8.977819892091]
Multi-label classification is a widely encountered problem in daily life, where an instance can be associated with multiple classes.
In this work, we address the issue of label imbalance and investigate how to train neural networks using partial labels.
arXiv Detail & Related papers (2023-07-31T21:50:48Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
We introduce a novel conditional image generation framework that accepts noisy-labeled and uncurated data during training.
We propose soft curriculum learning, which assigns instance-wise weights for adversarial training while assigning new labels for unlabeled data.
Our experiments show that our approach outperforms existing semi-supervised and label-noise robust methods in terms of both quantitative and qualitative performance.
arXiv Detail & Related papers (2023-07-17T08:31:59Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Revisiting Self-Training with Regularized Pseudo-Labeling for Tabular
Data [0.0]
We revisit self-training which can be applied to any kind of algorithm including gradient boosting decision tree.
We propose a novel pseudo-labeling approach that regularizes the confidence scores based on the likelihoods of the pseudo-labels.
arXiv Detail & Related papers (2023-02-27T18:12:56Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets.
To mitigate the requirement for labeled data, self-training is widely used in both academia and industry by pseudo labeling on readily-available unlabeled data.
We propose Debiased, in which the generation and utilization of pseudo labels are decoupled by two independent heads.
arXiv Detail & Related papers (2022-02-15T02:14:33Z) - Unsupervised Selective Labeling for More Effective Semi-Supervised
Learning [46.414510522978425]
unsupervised selective labeling consistently improves SSL methods over state-of-the-art active learning given labeled data.
Our work sets a new standard for practical and efficient SSL.
arXiv Detail & Related papers (2021-10-06T18:25:50Z) - A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels [49.990938653249415]
This research presents a methodology that assigns initial pseudo-labels to unlabeled data which is used as noisy-labeled data, and trains a deep neural network using the noisy-labeled data.
Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-03-08T11:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.