StableSemantics: A Synthetic Language-Vision Dataset of Semantic Representations in Naturalistic Images
- URL: http://arxiv.org/abs/2406.13735v1
- Date: Wed, 19 Jun 2024 17:59:40 GMT
- Title: StableSemantics: A Synthetic Language-Vision Dataset of Semantic Representations in Naturalistic Images
- Authors: Rushikesh Zawar, Shaurya Dewan, Andrew F. Luo, Margaret M. Henderson, Michael J. Tarr, Leila Wehbe,
- Abstract summary: understanding the semantics of visual scenes is a fundamental challenge in Computer Vision.
Recent advancements in text-to-image frameworks have led to models that implicitly capture natural scene statistics.
Our work presents StableSemantics, a dataset comprising 224 thousand human-curated prompts, processed natural language captions, over 2 million synthetic images, and 10 million attention maps corresponding to individual noun chunks.
- Score: 5.529078451095096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the semantics of visual scenes is a fundamental challenge in Computer Vision. A key aspect of this challenge is that objects sharing similar semantic meanings or functions can exhibit striking visual differences, making accurate identification and categorization difficult. Recent advancements in text-to-image frameworks have led to models that implicitly capture natural scene statistics. These frameworks account for the visual variability of objects, as well as complex object co-occurrences and sources of noise such as diverse lighting conditions. By leveraging large-scale datasets and cross-attention conditioning, these models generate detailed and contextually rich scene representations. This capability opens new avenues for improving object recognition and scene understanding in varied and challenging environments. Our work presents StableSemantics, a dataset comprising 224 thousand human-curated prompts, processed natural language captions, over 2 million synthetic images, and 10 million attention maps corresponding to individual noun chunks. We explicitly leverage human-generated prompts that correspond to visually interesting stable diffusion generations, provide 10 generations per phrase, and extract cross-attention maps for each image. We explore the semantic distribution of generated images, examine the distribution of objects within images, and benchmark captioning and open vocabulary segmentation methods on our data. To the best of our knowledge, we are the first to release a diffusion dataset with semantic attributions. We expect our proposed dataset to catalyze advances in visual semantic understanding and provide a foundation for developing more sophisticated and effective visual models. Website: https://stablesemantics.github.io/StableSemantics
Related papers
- Compositional Entailment Learning for Hyperbolic Vision-Language Models [54.41927525264365]
We show how to fully leverage the innate hierarchical nature of hyperbolic embeddings by looking beyond individual image-text pairs.
We propose Compositional Entailment Learning for hyperbolic vision-language models.
Empirical evaluation on a hyperbolic vision-language model trained with millions of image-text pairs shows that the proposed compositional learning approach outperforms conventional Euclidean CLIP learning.
arXiv Detail & Related papers (2024-10-09T14:12:50Z) - Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
Text-to-image diffusion techniques have shown exceptional capability of producing high-quality images from text descriptions.
We propose a method built upon a state-of-the-art diffusion model, empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object representations.
arXiv Detail & Related papers (2023-12-29T07:59:07Z) - Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects [11.117055725415446]
Large Vision Language Models (LVLMs) have demonstrated impressive zero-shot capabilities in various vision-language dialogue scenarios.
The absence of fine-grained visual object detection hinders the model from understanding the details of images, leading to irreparable visual hallucinations and factual errors.
We propose Lyrics, a novel multi-modal pre-training and instruction fine-tuning paradigm that bootstraps vision-language alignment from fine-grained cross-modal collaboration.
arXiv Detail & Related papers (2023-12-08T09:02:45Z) - Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for
Improved Vision-Language Compositionality [50.48859793121308]
Contrastively trained vision-language models have achieved remarkable progress in vision and language representation learning.
Recent research has highlighted severe limitations in their ability to perform compositional reasoning over objects, attributes, and relations.
arXiv Detail & Related papers (2023-05-23T08:28:38Z) - Hyperbolic Contrastive Learning for Visual Representations beyond
Objects [30.618032825306187]
We focus on learning representations for objects and scenes that preserve the structure among them.
Motivated by the observation that visually similar objects are close in the representation space, we argue that the scenes and objects should instead follow a hierarchical structure.
arXiv Detail & Related papers (2022-12-01T16:58:57Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
Story visualization aims to generate a sequence of images to narrate each sentence in a multi-sentence story.
Current works face the problem of semantic misalignment because of their fixed architecture and diversity of input modalities.
We explore the semantic alignment between text and image representations by learning to match their semantic levels in the GAN-based generative model.
arXiv Detail & Related papers (2022-11-14T11:41:44Z) - Perceptual Grouping in Contrastive Vision-Language Models [59.1542019031645]
We show how vision-language models are able to understand where objects reside within an image and group together visually related parts of the imagery.
We propose a minimal set of modifications that results in models that uniquely learn both semantic and spatial information.
arXiv Detail & Related papers (2022-10-18T17:01:35Z) - Integrating Visuospatial, Linguistic and Commonsense Structure into
Story Visualization [81.26077816854449]
We first explore the use of constituency parse trees for encoding structured input.
Second, we augment the structured input with commonsense information and study the impact of this external knowledge on the generation of visual story.
Third, we incorporate visual structure via bounding boxes and dense captioning to provide feedback about the characters/objects in generated images.
arXiv Detail & Related papers (2021-10-21T00:16:02Z) - MOC-GAN: Mixing Objects and Captions to Generate Realistic Images [21.240099965546637]
We introduce a more rational setting, generating a realistic image from the objects and captions.
Under this setting, objects explicitly define the critical roles in the targeted images and captions implicitly describe their rich attributes and connections.
A MOC-GAN is proposed to mix the inputs of two modalities to generate realistic images.
arXiv Detail & Related papers (2021-06-06T14:04:07Z) - Learning to Represent Image and Text with Denotation Graph [32.417311523031195]
We propose learning representations from a set of implied, visually grounded expressions between image and text.
We show that state-of-the-art multimodal learning models can be further improved by leveraging automatically harvested structural relations.
arXiv Detail & Related papers (2020-10-06T18:00:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.