StackRAG Agent: Improving Developer Answers with Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2406.13840v1
- Date: Wed, 19 Jun 2024 21:07:35 GMT
- Title: StackRAG Agent: Improving Developer Answers with Retrieval-Augmented Generation
- Authors: Davit Abrahamyan, Fatemeh H. Fard,
- Abstract summary: StackRAG is a retrieval-augmented Multiagent generation tool based on Large Language Models.
It combines the two worlds: aggregating the knowledge from SO to enhance the reliability of the generated answers.
Initial evaluations show that the generated answers are correct, accurate, relevant, and useful.
- Score: 2.225268436173329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developers spend much time finding information that is relevant to their questions. Stack Overflow has been the leading resource, and with the advent of Large Language Models (LLMs), generative models such as ChatGPT are used frequently. However, there is a catch in using each one separately. Searching for answers is time-consuming and tedious, as shown by the many tools developed by researchers to address this issue. On the other, using LLMs is not reliable, as they might produce irrelevant or unreliable answers (i.e., hallucination). In this work, we present StackRAG, a retrieval-augmented Multiagent generation tool based on LLMs that combines the two worlds: aggregating the knowledge from SO to enhance the reliability of the generated answers. Initial evaluations show that the generated answers are correct, accurate, relevant, and useful.
Related papers
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs)
We propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch.
arXiv Detail & Related papers (2024-11-05T09:27:21Z) - Language Models can Self-Lengthen to Generate Long Texts [74.96074422345806]
This paper introduces an innovative iterative training framework called Self-Lengthen.
It leverages only the intrinsic knowledge and skills of Large Language Models without the need for auxiliary data or proprietary models.
Experiments on benchmarks and human evaluations show that Self-Lengthen outperforms existing methods in long-text generation.
arXiv Detail & Related papers (2024-10-31T13:47:10Z) - MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery [24.38640001674072]
Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases.
Existing RAG systems are primarily effective for straightforward question-answering tasks.
We propose MemoRAG, a novel retrieval-augmented generation paradigm empowered by long-term memory.
arXiv Detail & Related papers (2024-09-09T13:20:31Z) - PersonaRAG: Enhancing Retrieval-Augmented Generation Systems with User-Centric Agents [0.9135658693137204]
This paper introduces PersonaRAG, a novel framework incorporating user-centric agents to adapt retrieval and generation based on real-time user data and interactions.
The results suggest promising directions for user-adapted information retrieval systems.
arXiv Detail & Related papers (2024-07-12T16:18:00Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
We conduct a systematic, large-scale analysis of code generation using retrieval-augmented generation.
We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks.
We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources.
arXiv Detail & Related papers (2024-06-20T16:59:52Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
We investigate the use of Multi-Embodied LLM Explorers (MELE) for question-answering in an unknown environment.
Multiple LLM-based agents independently explore and then answer queries about a household environment.
We analyze different aggregation methods to generate a single, final answer for each query.
arXiv Detail & Related papers (2024-06-16T12:46:40Z) - ChatGPT vs LLaMA: Impact, Reliability, and Challenges in Stack Overflow
Discussions [13.7001994656622]
ChatGPT has shaken up Stack Overflow, the premier platform for developers' queries on programming and software development.
Two months after ChatGPT's release, Meta released its answer with its own Large Language Model (LLM) called LLaMA: the race was on.
arXiv Detail & Related papers (2024-02-13T21:15:33Z) - Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning [73.51314109184197]
It is crucial for large language models (LLMs) to understand the concept of temporal knowledge.
We propose a complex temporal question-answering dataset Complex-TR that focuses on multi-answer and multi-hop temporal reasoning.
arXiv Detail & Related papers (2023-11-16T11:49:29Z) - Active Retrieval Augmented Generation [123.68874416084499]
Augmenting large language models (LMs) by retrieving information from external knowledge resources is one promising solution.
Most existing retrieval augmented LMs employ a retrieve-and-generate setup that only retrieves information once based on the input.
We propose Forward-Looking Active REtrieval augmented generation (FLARE), a generic method which iteratively uses a prediction of the upcoming sentence to anticipate future content.
arXiv Detail & Related papers (2023-05-11T17:13:40Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
Multi-modal multi-hop question answering involves answering a question by reasoning over multiple input sources from different modalities.
Existing methods often retrieve evidences separately and then use a language model to generate an answer based on the retrieved evidences.
We propose a Structured Knowledge and Unified Retrieval-Generation (RG) approach to address these issues.
arXiv Detail & Related papers (2022-12-16T18:12:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.