Large Language Models are Skeptics: False Negative Problem of Input-conflicting Hallucination
- URL: http://arxiv.org/abs/2406.13929v1
- Date: Thu, 20 Jun 2024 01:53:25 GMT
- Title: Large Language Models are Skeptics: False Negative Problem of Input-conflicting Hallucination
- Authors: Jongyoon Song, Sangwon Yu, Sungroh Yoon,
- Abstract summary: We identify a new category of bias that induces input-conflicting hallucinations.
We show that large language models (LLMs) generate responses inconsistent with the content of the input context.
- Score: 36.01680298955394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we identify a new category of bias that induces input-conflicting hallucinations, where large language models (LLMs) generate responses inconsistent with the content of the input context. This issue we have termed the false negative problem refers to the phenomenon where LLMs are predisposed to return negative judgments when assessing the correctness of a statement given the context. In experiments involving pairs of statements that contain the same information but have contradictory factual directions, we observe that LLMs exhibit a bias toward false negatives. Specifically, the model presents greater overconfidence when responding with False. Furthermore, we analyze the relationship between the false negative problem and context and query rewriting and observe that both effectively tackle false negatives in LLMs.
Related papers
- LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
Task of reading comprehension (RC) provides a primary means to assess language models' natural language understanding (NLU) capabilities.
If the context aligns with the models' internal knowledge, it is hard to discern whether the models' answers stem from context comprehension or from internal information.
To address this issue, we suggest to use RC on imaginary data, based on fictitious facts and entities.
arXiv Detail & Related papers (2024-04-09T13:08:56Z) - Revisiting subword tokenization: A case study on affixal negation in large language models [57.75279238091522]
We measure the impact of affixal negation on modern English large language models (LLMs)
We conduct experiments using LLMs with different subword tokenization methods.
We show that models can, on the whole, reliably recognize the meaning of affixal negation.
arXiv Detail & Related papers (2024-04-03T03:14:27Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - This is not a Dataset: A Large Negation Benchmark to Challenge Large
Language Models [4.017326849033009]
We try to clarify the reasons for the sub-optimal performance of large language models understanding negation.
We introduce a large semi-automatically generated dataset of circa 400,000 descriptive sentences about commonsense knowledge.
We have used our dataset with the largest available open LLMs in a zero-shot approach to grasp their generalization and inference capability.
arXiv Detail & Related papers (2023-10-24T15:38:21Z) - Language models are not naysayers: An analysis of language models on
negation benchmarks [58.32362243122714]
We evaluate the ability of current-generation auto-regressive language models to handle negation.
We show that LLMs have several limitations including insensitivity to the presence of negation, an inability to capture the lexical semantics of negation, and a failure to reason under negation.
arXiv Detail & Related papers (2023-06-14T01:16:37Z) - Can large language models generate salient negative statements? [18.577880767789097]
We examine the ability of large language models to generate salient (interesting) negative statements about real-world entities.
We probe the LLMs using zero- and k-shot unconstrained probes, and compare with traditional methods for negation generation.
We measure the correctness and salience of the generated lists about subjects from different domains.
arXiv Detail & Related papers (2023-05-26T09:13:59Z) - LM vs LM: Detecting Factual Errors via Cross Examination [22.50837561382647]
We propose a factuality evaluation framework for language models (LMs)
Our key idea is that an incorrect claim is likely to result in inconsistency with other claims that the model generates.
We empirically evaluate our method on factual claims made by multiple recent LMs on four benchmarks.
arXiv Detail & Related papers (2023-05-22T17:42:14Z) - Say What You Mean! Large Language Models Speak Too Positively about
Negative Commonsense Knowledge [22.543345304998258]
Large language models (LLMs) have been widely studied for their ability to store and utilize positive knowledge.
negative knowledge, such as "lions don't live in the ocean", is also ubiquitous in the world but rarely mentioned explicitly in the text.
This work examines the ability of LLMs to negative commonsense knowledge.
arXiv Detail & Related papers (2023-05-10T08:35:50Z) - Language Model Pre-training on True Negatives [109.73819321246062]
Discriminative pre-trained language models (PLMs) learn to predict original texts from intentionally corrupted ones.
Existing PLMs simply treat all corrupted texts as equal negative without any examination.
We design enhanced pre-training methods to counteract false negative predictions and encourage pre-training language models on true negatives.
arXiv Detail & Related papers (2022-12-01T12:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.