Feature Fusion Based on Mutual-Cross-Attention Mechanism for EEG Emotion Recognition
- URL: http://arxiv.org/abs/2406.14014v1
- Date: Thu, 20 Jun 2024 06:08:52 GMT
- Title: Feature Fusion Based on Mutual-Cross-Attention Mechanism for EEG Emotion Recognition
- Authors: Yimin Zhao, Jin Gu,
- Abstract summary: We propose a novel and effective feature fusion mechanism named Mutual-Cross-Attention (MCA)
MCA discovers the complementary relationship between time-domain and frequency-domain features in EEG data.
The proposed method eventually achieves 99.49% (valence) and 99.30% (arousal) accuracy on DEAP dataset.
- Score: 0.5985204759362747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An objective and accurate emotion diagnostic reference is vital to psychologists, especially when dealing with patients who are difficult to communicate with for pathological reasons. Nevertheless, current systems based on Electroencephalography (EEG) data utilized for sentiment discrimination have some problems, including excessive model complexity, mediocre accuracy, and limited interpretability. Consequently, we propose a novel and effective feature fusion mechanism named Mutual-Cross-Attention (MCA). Combining with a specially customized 3D Convolutional Neural Network (3D-CNN), this purely mathematical mechanism adeptly discovers the complementary relationship between time-domain and frequency-domain features in EEG data. Furthermore, the new designed Channel-PSD-DE 3D feature also contributes to the high performance. The proposed method eventually achieves 99.49% (valence) and 99.30% (arousal) accuracy on DEAP dataset.
Related papers
- Decoding Human Emotions: Analyzing Multi-Channel EEG Data using LSTM Networks [0.0]
This study aims to understand and improve the predictive accuracy of emotional state classification by applying a Long Short-Term Memory (LSTM) network to analyze EEG signals.
Using a popular dataset of multi-channel EEG recordings known as DEAP, we look towards leveraging LSTM networks' properties to handle temporal dependencies within EEG signal data.
We obtain accuracies of 89.89%, 90.33%, 90.70%, and 90.54% for arousal, valence, dominance, and likeness, respectively, demonstrating significant improvements in emotion recognition model capabilities.
arXiv Detail & Related papers (2024-08-19T18:10:47Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
We develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition.
The model learns universal latent representations of EEG signals through pre-training on large scale dataset.
Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks.
arXiv Detail & Related papers (2024-05-28T14:31:11Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Graph Convolutional Network with Connectivity Uncertainty for EEG-based
Emotion Recognition [20.655367200006076]
This study introduces the distribution-based uncertainty method to represent spatial dependencies and temporal-spectral relativeness in EEG signals.
The graph mixup technique is employed to enhance latent connected edges and mitigate noisy label issues.
We evaluate our approach on two widely used datasets, namely SEED and SEEDIV, for emotion recognition tasks.
arXiv Detail & Related papers (2023-10-22T03:47:11Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Hybrid Data Augmentation and Deep Attention-based Dilated
Convolutional-Recurrent Neural Networks for Speech Emotion Recognition [1.1086440815804228]
We investigate hybrid data augmentation (HDA) methods to generate and balance data based on traditional and generative adversarial networks (GAN) methods.
To evaluate the effectiveness of HDA methods, a deep learning framework namely (ADCRNN) is designed by integrating deep dilated convolutional-recurrent neural networks with an attention mechanism.
For validating our proposed methods, we use the EmoDB dataset that consists of several emotions with imbalanced samples.
arXiv Detail & Related papers (2021-09-18T23:13:44Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Investigating EEG-Based Functional Connectivity Patterns for Multimodal
Emotion Recognition [8.356765961526955]
We investigate three functional connectivity network features: strength, clustering, coefficient and eigenvector centrality.
The discrimination ability of the EEG connectivity features in emotion recognition is evaluated on three public EEG datasets.
We construct a multimodal emotion recognition model by combining the functional connectivity features from EEG and the features from eye movements or physiological signals.
arXiv Detail & Related papers (2020-04-04T16:51:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.