Seamless Language Expansion: Enhancing Multilingual Mastery in Self-Supervised Models
- URL: http://arxiv.org/abs/2406.14092v1
- Date: Thu, 20 Jun 2024 08:13:30 GMT
- Title: Seamless Language Expansion: Enhancing Multilingual Mastery in Self-Supervised Models
- Authors: Jing Xu, Minglin Wu, Xixin Wu, Helen Meng,
- Abstract summary: We propose adaptation methods which integrate LoRA to existed SSL models to extend new language.
We also develop preservation strategies which include data combination and re-clustering to retain abilities on existed languages.
- Score: 60.09618700199927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised (SSL) models have shown great performance in various downstream tasks. However, they are typically developed for limited languages, and may encounter new languages in real-world. Developing a SSL model for each new language is costly. Thus, it is vital to figure out how to efficiently adapt existed SSL models to a new language without impairing its original abilities. We propose adaptation methods which integrate LoRA to existed SSL models to extend new language. We also develop preservation strategies which include data combination and re-clustering to retain abilities on existed languages. Applied to mHuBERT, we investigate their effectiveness on speech re-synthesis task. Experiments show that our adaptation methods enable mHuBERT to be applied to a new language (Mandarin) with MOS value increased about 1.6 and the relative value of WER reduced up to 61.72%. Also, our preservation strategies ensure that the performance on both existed and new languages remains intact.
Related papers
- QueEn: A Large Language Model for Quechua-English Translation [20.377876059048692]
We propose QueEn, a novel approach for Quechua-English translation that combines Retrieval-Augmented Generation (RAG) with parameter-efficient fine-tuning techniques.
Our approach substantially exceeds baseline models, with a BLEU score of 17.6 compared to 1.5 for standard GPT models.
arXiv Detail & Related papers (2024-12-06T17:04:21Z) - How to Learn a New Language? An Efficient Solution for Self-Supervised Learning Models Unseen Languages Adaption in Low-Resource Scenario [72.02391485962127]
Speech Self-Supervised Learning (SSL) models achieve impressive performance on Automatic Speech Recognition (ASR)
In low-resource language ASR, they encounter the domain mismatch problem between pre-trained and low-resource languages.
We extend a conventional efficient fine-tuning scheme based on the adapter to handle these issues.
arXiv Detail & Related papers (2024-11-27T10:51:00Z) - Efficient Compression of Multitask Multilingual Speech Models [0.0]
DistilWhisper is able to bridge the performance gap in ASR for these languages while retaining the advantages of multitask and multilingual capabilities.
Our approach involves two key strategies: lightweight modular ASR fine-tuning of whisper-small using language-specific experts, and knowledge distillation from whisper-large-v2.
arXiv Detail & Related papers (2024-05-02T03:11:59Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- Composition to Augment Language Models -- introduces cross-attention between models to compose their representations and enable new capabilities.
We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13% on tasks like translation into English.
When PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40% over the base model for code generation and explanation tasks.
arXiv Detail & Related papers (2024-01-04T18:53:01Z) - Efficiently Adapting Pretrained Language Models To New Languages [9.33333013114014]
Recent large language models (LLM) exhibit sub-optimal performance on low-resource languages.
We study how to efficiently adapt any existing pretrained LLM to a new language without running into these issues.
arXiv Detail & Related papers (2023-11-09T20:59:08Z) - Improving Language Plasticity via Pretraining with Active Forgetting [63.36484652568976]
We propose to use an active forgetting mechanism during pretraining, as a simple way of creating PLMs that can quickly adapt to new languages.
Experiments with RoBERTa show that models pretrained with our forgetting mechanism demonstrate faster convergence during language adaptation.
arXiv Detail & Related papers (2023-07-03T17:12:44Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting [50.24676567971536]
The BLOOM model is a large publicly available multilingual language model, but its pretraining was limited to 46 languages.
We apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages.
We conclude that with sufficient training data language adaptation can generalize well to diverse languages.
arXiv Detail & Related papers (2022-12-19T15:24:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.