Geometric Self-Supervised Pretraining on 3D Protein Structures using Subgraphs
- URL: http://arxiv.org/abs/2406.14142v3
- Date: Sat, 19 Oct 2024 14:09:48 GMT
- Title: Geometric Self-Supervised Pretraining on 3D Protein Structures using Subgraphs
- Authors: Michail Chatzianastasis, Yang Zhang, George Dasoulas, Michalis Vazirgiannis,
- Abstract summary: We propose a novel self-supervised method to pretrain 3D graph neural networks on 3D protein structures.
We experimentally show that our proposed pertaining strategy leads to significant improvements up to 6%.
- Score: 26.727436310732692
- License:
- Abstract: Protein representation learning aims to learn informative protein embeddings capable of addressing crucial biological questions, such as protein function prediction. Although sequence-based transformer models have shown promising results by leveraging the vast amount of protein sequence data in a self-supervised way, there is still a gap in exploiting the available 3D protein structures. In this work, we propose a pre-training scheme going beyond trivial masking methods leveraging 3D and hierarchical structures of proteins. We propose a novel self-supervised method to pretrain 3D graph neural networks on 3D protein structures, by predicting the distances between local geometric centroids of protein subgraphs and the global geometric centroid of the protein. By considering subgraphs and their relationships to the global protein structure, our model can better learn the geometric properties of the protein structure. We experimentally show that our proposed pertaining strategy leads to significant improvements up to 6\%, in the performance of 3D GNNs in various protein classification tasks. Our work opens new possibilities in unsupervised learning for protein graph models while eliminating the need for multiple views, augmentations, or masking strategies which are currently used so far.
Related papers
- NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
We propose novel semantic data augmentation methods to incorporate backbone chemical and side-chain biophysical information into protein classification tasks.
Specifically, we leverage molecular biophysical, secondary structure, chemical bonds, andionic features of proteins to facilitate classification tasks.
arXiv Detail & Related papers (2024-03-21T13:27:57Z) - EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction [49.674494450107005]
Predicting the binding sites of target proteins plays a fundamental role in drug discovery.
Most existing deep-learning methods consider a protein as a 3D image by spatially clustering its atoms into voxels.
This work proposes EquiPocket, an E(3)-equivariant Graph Neural Network (GNN) for binding site prediction.
arXiv Detail & Related papers (2023-02-23T17:18:26Z) - Data-Efficient Protein 3D Geometric Pretraining via Refinement of
Diffused Protein Structure Decoy [42.49977473599661]
Learning meaningful protein representation is important for a variety of biological downstream tasks such as structure-based drug design.
In this paper, we propose a unified framework for protein pretraining and a 3D geometric-based, data-efficient, and protein-specific pretext task: RefineDiff.
arXiv Detail & Related papers (2023-02-05T14:13:32Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
We integrate knowledge learned by protein language models into several state-of-the-art geometric networks.
Our findings show an overall improvement of 20% over baselines.
Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin.
arXiv Detail & Related papers (2022-12-07T04:04:04Z) - Contrastive Representation Learning for 3D Protein Structures [13.581113136149469]
We introduce a new representation learning framework for 3D protein structures.
Our framework uses unsupervised contrastive learning to learn meaningful representations of protein structures.
We show, how these representations can be used to solve a large variety of tasks, such as protein function prediction, protein fold classification, structural similarity prediction, and protein-ligand binding affinity prediction.
arXiv Detail & Related papers (2022-05-31T10:33:06Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z) - Protein Representation Learning by Geometric Structure Pretraining [27.723095456631906]
Existing approaches usually pretrain protein language models on a large number of unlabeled amino acid sequences.
We first present a simple yet effective encoder to learn protein geometry features.
Experimental results on both function prediction and fold classification tasks show that our proposed pretraining methods outperform or are on par with the state-of-the-art sequence-based methods using much less data.
arXiv Detail & Related papers (2022-03-11T17:52:13Z) - G-VAE, a Geometric Convolutional VAE for ProteinStructure Generation [41.66010308405784]
We introduce a joint geometric-neural networks approach for comparing, deforming and generating 3D protein structures.
Our method is able to generate plausible structures, different from the structures in the training data.
arXiv Detail & Related papers (2021-06-22T16:52:48Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
We demonstrate methods for analyzing protein Transformer models through the lens of attention.
We show that attention captures the folding structure of proteins, connecting amino acids that are far apart in the underlying sequence, but spatially close in the three-dimensional structure.
We also present a three-dimensional visualization of the interaction between attention and protein structure.
arXiv Detail & Related papers (2020-06-26T21:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.