Tractable Equilibrium Computation in Markov Games through Risk Aversion
- URL: http://arxiv.org/abs/2406.14156v2
- Date: Tue, 27 Aug 2024 02:31:50 GMT
- Title: Tractable Equilibrium Computation in Markov Games through Risk Aversion
- Authors: Eric Mazumdar, Kishan Panaganti, Laixi Shi,
- Abstract summary: We show that risk-averse quantal response equilibria (RQE) become tractable to compute in all $n$-player matrix and finite-horizon Markov games.
RQE is independent of the underlying game structure and only depends on agents' degree of risk-aversion and bounded rationality.
- Score: 12.980882140751895
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A significant roadblock to the development of principled multi-agent reinforcement learning is the fact that desired solution concepts like Nash equilibria may be intractable to compute. To overcome this obstacle, we take inspiration from behavioral economics and show that -- by imbuing agents with important features of human decision-making like risk aversion and bounded rationality -- a class of risk-averse quantal response equilibria (RQE) become tractable to compute in all $n$-player matrix and finite-horizon Markov games. In particular, we show that they emerge as the endpoint of no-regret learning in suitably adjusted versions of the games. Crucially, the class of computationally tractable RQE is independent of the underlying game structure and only depends on agents' degree of risk-aversion and bounded rationality. To validate the richness of this class of solution concepts we show that it captures peoples' patterns of play in a number of 2-player matrix games previously studied in experimental economics. Furthermore, we give a first analysis of the sample complexity of computing these equilibria in finite-horizon Markov games when one has access to a generative model and validate our findings on a simple multi-agent reinforcement learning benchmark.
Related papers
- Optimistic Policy Gradient in Multi-Player Markov Games with a Single
Controller: Convergence Beyond the Minty Property [89.96815099996132]
We develop a new framework to characterize optimistic policy gradient methods in multi-player games with a single controller.
Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.
arXiv Detail & Related papers (2023-12-19T11:34:10Z) - A Black-box Approach for Non-stationary Multi-agent Reinforcement Learning [53.83345471268163]
We investigate learning the equilibria in non-stationary multi-agent systems.
We show how to test for various types of equilibria by a black-box reduction to single-agent learning.
arXiv Detail & Related papers (2023-06-12T23:48:24Z) - Hardness of Independent Learning and Sparse Equilibrium Computation in
Markov Games [70.19141208203227]
We consider the problem of decentralized multi-agent reinforcement learning in Markov games.
We show that no algorithm attains no-regret in general-sum games when executed independently by all players.
We show that our lower bounds hold even for seemingly easier setting in which all agents are controlled by a centralized algorithm.
arXiv Detail & Related papers (2023-03-22T03:28:12Z) - Breaking the Curse of Multiagents in a Large State Space: RL in Markov
Games with Independent Linear Function Approximation [56.715186432566576]
We propose a new model, independent linear Markov game, for reinforcement learning with a large state space and a large number of agents.
We design new algorithms for learning correlated equilibria (CCE) and Markov correlated equilibria (CE) with sample bounds complexity that only scalely with each agent's own function class complexity.
Our algorithms rely on two key technical innovations: (1) utilizing policy replay to tackle non-stationarity incurred by multiple agents and the use of function approximation; and (2) separating learning Markov equilibria and exploration in the Markov games.
arXiv Detail & Related papers (2023-02-07T18:47:48Z) - Learning Rationalizable Equilibria in Multiplayer Games [38.922957434291554]
Existing algorithms require a number of samples exponential in the number of players to learn rationalizable equilibria under bandit feedback.
This paper develops the first line of efficient algorithms for learning rationalizable Coarse Correlated Equilibria (CCE) and Correlated Equilibria (CE)
Our algorithms incorporate several novel techniques to guarantee rationalizability and no (swap-)regret simultaneously, including a correlated exploration scheme and adaptive learning rates.
arXiv Detail & Related papers (2022-10-20T16:49:00Z) - Efficiently Computing Nash Equilibria in Adversarial Team Markov Games [19.717850955051837]
We introduce a class of games in which a team identically players is competing against an adversarial player.
This setting allows for a unifying treatment of zero-sum Markov games potential games.
Our main contribution is the first algorithm for computing stationary $epsilon$-approximate Nash equilibria in adversarial team Markov games.
arXiv Detail & Related papers (2022-08-03T16:41:01Z) - Regret Minimization and Convergence to Equilibria in General-sum Markov
Games [57.568118148036376]
We present the first algorithm for learning in general-sum Markov games that provides sublinear regret guarantees when executed by all agents.
Our algorithm is decentralized, computationally efficient, and does not require any communication between agents.
arXiv Detail & Related papers (2022-07-28T16:27:59Z) - Exploration-Exploitation in Multi-Agent Competition: Convergence with
Bounded Rationality [21.94743452608215]
We study smooth Q-learning, a prototypical learning model that captures the balance between game rewards and exploration costs.
We show that Q-learning always converges to the unique quantal-response equilibrium (QRE), the standard solution concept for games under bounded rationality.
arXiv Detail & Related papers (2021-06-24T11:43:38Z) - Learning Zero-Sum Simultaneous-Move Markov Games Using Function
Approximation and Correlated Equilibrium [116.56359444619441]
We develop provably efficient reinforcement learning algorithms for two-player zero-sum finite-horizon Markov games.
In the offline setting, we control both players and aim to find the Nash Equilibrium by minimizing the duality gap.
In the online setting, we control a single player playing against an arbitrary opponent and aim to minimize the regret.
arXiv Detail & Related papers (2020-02-17T17:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.