Computing Within Limits: An Empirical Study of Energy Consumption in ML Training and Inference
- URL: http://arxiv.org/abs/2406.14328v1
- Date: Thu, 20 Jun 2024 13:59:34 GMT
- Title: Computing Within Limits: An Empirical Study of Energy Consumption in ML Training and Inference
- Authors: Ioannis Mavromatis, Kostas Katsaros, Aftab Khan,
- Abstract summary: Machine learning (ML) has seen tremendous advancements, but its environmental footprint remains a concern.
Acknowledging the growing environmental impact of ML this paper investigates Green ML.
- Score: 2.553456266022126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) has seen tremendous advancements, but its environmental footprint remains a concern. Acknowledging the growing environmental impact of ML this paper investigates Green ML, examining various model architectures and hyperparameters in both training and inference phases to identify energy-efficient practices. Our study leverages software-based power measurements for ease of replication across diverse configurations, models and datasets. In this paper, we examine multiple models and hardware configurations to identify correlations across the various measurements and metrics and key contributors to energy reduction. Our analysis offers practical guidelines for constructing sustainable ML operations, emphasising energy consumption and carbon footprint reductions while maintaining performance. As identified, short-lived profiling can quantify the long-term expected energy consumption. Moreover, model parameters can also be used to accurately estimate the expected total energy without the need for extensive experimentation.
Related papers
- Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - Normalizing Energy Consumption for Hardware-Independent Evaluation [9.658615045493734]
We present a novel methodology for normalizing energy consumption across different hardware platforms.
Our approach shows that the number of reference points, the type of regression and the inclusion of computational metrics significantly influences the normalization process.
arXiv Detail & Related papers (2024-09-09T13:38:00Z) - The Price of Prompting: Profiling Energy Use in Large Language Models Inference [5.254805405012678]
This paper introduces MELODI, a framework crafted to monitor and analyze the energy consumed during large language models inference processes.
The dataset, generated using MELODI, encompasses a broad spectrum of LLM deployment frameworks, multiple language models, and extensive prompt datasets.
Our findings indicate substantial disparities in energy efficiency, suggesting ample scope for optimization and adoption of sustainable measures.
arXiv Detail & Related papers (2024-07-04T12:16:28Z) - EcoMLS: A Self-Adaptation Approach for Architecting Green ML-Enabled Systems [1.0923877073891446]
Self-adaptation techniques, recognized for their potential in energy savings within software systems, have yet to be extensively explored in Machine Learning-Enabled Systems.
This research underscores the feasibility of enhancing MLS sustainability through intelligent runtime adaptations.
arXiv Detail & Related papers (2024-04-17T14:12:47Z) - Enhancing Energy-Awareness in Deep Learning through Fine-Grained Energy
Measurement [11.37120215795946]
This paper introduces FECoM (Fine-grained Energy Consumption Meter), a framework for fine-grained Deep Learning energy consumption measurement.
FECoM addresses the challenges of measuring energy consumption at fine-grained level by using static instrumentation and considering various factors, including computational load stability and temperature.
arXiv Detail & Related papers (2023-08-23T17:32:06Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - On Feature Diversity in Energy-based Models [98.78384185493624]
An energy-based model (EBM) is typically formed of inner-model(s) that learn a combination of the different features to generate an energy mapping for each input configuration.
We extend the probably approximately correct (PAC) theory of EBMs and analyze the effect of redundancy reduction on the performance of EBMs.
arXiv Detail & Related papers (2023-06-02T12:30:42Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Energy Efficiency of Training Neural Network Architectures: An Empirical
Study [11.325530936177493]
The evaluation of Deep Learning models has traditionally focused on criteria such as accuracy, F1 score, and related measures.
The computations needed to train such models entail a large carbon footprint.
We study the relations between DL model architectures and their environmental impact in terms of energy consumed and CO$$ emissions produced during training.
arXiv Detail & Related papers (2023-02-02T09:20:54Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.