CollaFuse: Collaborative Diffusion Models
- URL: http://arxiv.org/abs/2406.14429v2
- Date: Sun, 27 Oct 2024 12:42:53 GMT
- Title: CollaFuse: Collaborative Diffusion Models
- Authors: Simeon Allmendinger, Domenique Zipperling, Lukas Struppek, Niklas Kühl,
- Abstract summary: We introduce a novel approach for distributed collaborative diffusion models inspired by split learning.
Our approach facilitates collaborative training of diffusion models while alleviating client computational burdens during image synthesis.
- Score: 5.331052581441263
- License:
- Abstract: In the landscape of generative artificial intelligence, diffusion-based models have emerged as a promising method for generating synthetic images. However, the application of diffusion models poses numerous challenges, particularly concerning data availability, computational requirements, and privacy. Traditional approaches to address these shortcomings, like federated learning, often impose significant computational burdens on individual clients, especially those with constrained resources. In response to these challenges, we introduce a novel approach for distributed collaborative diffusion models inspired by split learning. Our approach facilitates collaborative training of diffusion models while alleviating client computational burdens during image synthesis. This reduced computational burden is achieved by retaining data and computationally inexpensive processes locally at each client while outsourcing the computationally expensive processes to shared, more efficient server resources. Through experiments on the common CelebA dataset, our approach demonstrates enhanced privacy by reducing the necessity for sharing raw data. These capabilities hold significant potential across various application areas, including the design of edge computing solutions. Thus, our work advances distributed machine learning by contributing to the evolution of collaborative diffusion models.
Related papers
- Accelerated Stochastic ExtraGradient: Mixing Hessian and Gradient Similarity to Reduce Communication in Distributed and Federated Learning [50.382793324572845]
Distributed computing involves communication between devices, which requires solving two key problems: efficiency and privacy.
In this paper, we analyze a new method that incorporates the ideas of using data similarity and clients sampling.
To address privacy concerns, we apply the technique of additional noise and analyze its impact on the convergence of the proposed method.
arXiv Detail & Related papers (2024-09-22T00:49:10Z) - MSfusion: A Dynamic Model Splitting Approach for Resource-Constrained Machines to Collaboratively Train Larger Models [16.012249716875132]
We introduce MSfusion, an effective and efficient collaborative learning framework for training large models on resourceconstraint machines.
In each training round, each participant is assigned a subset of model parameters to train over local data, and aggregates with sub-models of other peers on common parameters.
Experiments on image and NLP tasks illustrate significant advantages of MSfusion in performance and efficiency for training large models.
arXiv Detail & Related papers (2024-07-04T04:06:24Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models.
They rely on sequential denoising steps during sample generation.
We propose a novel method that integrates denoising phases directly into the model's architecture.
arXiv Detail & Related papers (2024-05-31T08:19:44Z) - CollaFuse: Navigating Limited Resources and Privacy in Collaborative Generative AI [5.331052581441263]
CollaFuse is a novel framework inspired by split learning.
It enables shared server training and inference, alleviating client computational burdens.
It has the potential to impact various application areas, such as the design of edge computing solutions, healthcare research, or autonomous driving.
arXiv Detail & Related papers (2024-02-29T12:36:10Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
One-shot federated learning (OSFL) has gained attention in recent years due to its low communication cost.
In this paper, we explore the novel opportunities that diffusion models bring to OSFL and propose FedCADO.
FedCADO generates data that complies with clients' distributions and subsequently training the aggregated model on the server.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - Towards Personalized Federated Learning via Heterogeneous Model
Reassembly [84.44268421053043]
pFedHR is a framework that leverages heterogeneous model reassembly to achieve personalized federated learning.
pFedHR dynamically generates diverse personalized models in an automated manner.
arXiv Detail & Related papers (2023-08-16T19:36:01Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Federated Pruning: Improving Neural Network Efficiency with Federated
Learning [24.36174705715827]
We propose Federated Pruning to train a reduced model under the federated setting.
We explore different pruning schemes and provide empirical evidence of the effectiveness of our methods.
arXiv Detail & Related papers (2022-09-14T00:48:37Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Distributed Deep Learning in Open Collaborations [49.240611132653456]
We propose a novel algorithmic framework designed specifically for collaborative training.
We demonstrate the effectiveness of our approach for SwAV and ALBERT pretraining in realistic conditions and achieve performance comparable to traditional setups at a fraction of the cost.
arXiv Detail & Related papers (2021-06-18T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.