rKAN: Rational Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2406.14495v1
- Date: Thu, 20 Jun 2024 16:59:38 GMT
- Title: rKAN: Rational Kolmogorov-Arnold Networks
- Authors: Alireza Afzal Aghaei,
- Abstract summary: We explore the use of rational functions as a novel basis function for Kolmogorov-Arnold networks (KANs)
We propose two different approaches based on Pade approximation and rational Jacobi functions as trainable basis functions, establishing the rational KAN (rKAN)
We then evaluate rKAN's performance in various deep learning and physics-informed tasks to demonstrate its practicality and effectiveness in function approximation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of Kolmogorov-Arnold networks (KANs) marks a significant shift from traditional multi-layer perceptrons in deep learning. Initially, KANs employed B-spline curves as their primary basis function, but their inherent complexity posed implementation challenges. Consequently, researchers have explored alternative basis functions such as Wavelets, Polynomials, and Fractional functions. In this research, we explore the use of rational functions as a novel basis function for KANs. We propose two different approaches based on Pade approximation and rational Jacobi functions as trainable basis functions, establishing the rational KAN (rKAN). We then evaluate rKAN's performance in various deep learning and physics-informed tasks to demonstrate its practicality and effectiveness in function approximation.
Related papers
- Rethinking the Function of Neurons in KANs [1.223779595809275]
The neurons of Kolmogorov-Arnold Networks (KANs) perform a simple summation motivated by the Kolmogorov-Arnold representation theorem.
In this work, we investigate the potential for identifying an alternative multivariate function for KAN neurons that may offer increased practical utility.
arXiv Detail & Related papers (2024-07-30T09:04:23Z) - fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions [0.0]
Recent advancements in neural network design have given rise to the development of Kolmogorov-Arnold Networks (KANs)
This paper presents a novel neural network architecture that incorporates a trainable adaptive fractional-orthogonal Jacobi function as its basis function.
The results demonstrate that integrating fractional Jacobi functions into KANs significantly improves training speed and performance across diverse fields and applications.
arXiv Detail & Related papers (2024-06-11T17:01:45Z) - Chebyshev Polynomial-Based Kolmogorov-Arnold Networks: An Efficient Architecture for Nonlinear Function Approximation [0.0]
This paper presents the Chebyshev Kolmogorov-Arnold Network (Chebyshev KAN), a new neural network architecture inspired by the Kolmogorov-Arnold theorem.
By utilizing learnable functions parametrized by Chebyshevs on the network's edges, Chebyshev KANs enhance flexibility, efficiency, and interpretability in function approximation tasks.
arXiv Detail & Related papers (2024-05-12T07:55:43Z) - Approximation of RKHS Functionals by Neural Networks [30.42446856477086]
We study the approximation of functionals on kernel reproducing Hilbert spaces (RKHS's) using neural networks.
We derive explicit error bounds for those induced by inverse multiquadric, Gaussian, and Sobolev kernels.
We apply our findings to functional regression, proving that neural networks can accurately approximate the regression maps.
arXiv Detail & Related papers (2024-03-18T18:58:23Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - UNIPoint: Universally Approximating Point Processes Intensities [125.08205865536577]
We provide a proof that a class of learnable functions can universally approximate any valid intensity function.
We implement UNIPoint, a novel neural point process model, using recurrent neural networks to parameterise sums of basis function upon each event.
arXiv Detail & Related papers (2020-07-28T09:31:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.