Fantastic Copyrighted Beasts and How (Not) to Generate Them
- URL: http://arxiv.org/abs/2406.14526v1
- Date: Thu, 20 Jun 2024 17:38:16 GMT
- Title: Fantastic Copyrighted Beasts and How (Not) to Generate Them
- Authors: Luxi He, Yangsibo Huang, Weijia Shi, Tinghao Xie, Haotian Liu, Yue Wang, Luke Zettlemoyer, Chiyuan Zhang, Danqi Chen, Peter Henderson,
- Abstract summary: Copyrighted characters pose a difficult challenge for image generation services.
At least one lawsuit has been awarded damages based on the generation of these characters.
- Score: 83.77348858322523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns around copyright infringement. Copyrighted characters, in particular, pose a difficult challenge for image generation services, with at least one lawsuit already awarding damages based on the generation of these characters. Yet, little research has empirically examined this issue. We conduct a systematic evaluation to fill this gap. First, we build CopyCat, an evaluation suite consisting of diverse copyrighted characters and a novel evaluation pipeline. Our evaluation considers both the detection of similarity to copyrighted characters and generated image's consistency with user input. Our evaluation systematically shows that both image and video generation models can still generate characters even if characters' names are not explicitly mentioned in the prompt, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We then introduce techniques to semi-automatically identify such keywords or descriptions that trigger character generation. Using our evaluation suite, we study runtime mitigation strategies, including both existing methods and new strategies we propose. Our findings reveal that commonly employed strategies, such as prompt rewriting in the DALL-E system, are not sufficient as standalone guardrails. These strategies must be coupled with other approaches, like negative prompting, to effectively reduce the unintended generation of copyrighted characters. Our work provides empirical grounding to the discussion of copyright mitigation strategies and offers actionable insights for model deployers actively implementing them.
Related papers
- CopyBench: Measuring Literal and Non-Literal Reproduction of Copyright-Protected Text in Language Model Generation [132.00910067533982]
We introduce CopyBench, a benchmark designed to measure both literal and non-literal copying in LM generations.
We find that, although literal copying is relatively rare, two types of non-literal copying -- event copying and character copying -- occur even in models as small as 7B parameters.
arXiv Detail & Related papers (2024-07-09T17:58:18Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material.
This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs.
We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches.
arXiv Detail & Related papers (2024-06-26T18:09:46Z) - SHIELD: Evaluation and Defense Strategies for Copyright Compliance in LLM Text Generation [24.644101178288476]
Large Language Models (LLMs) have transformed machine learning but raised significant legal concerns.
LLMs may infringe on copyrights or overly restrict non-copyrighted texts.
We propose lightweight, real-time defense to prevent the generation of copyrighted text.
arXiv Detail & Related papers (2024-06-18T18:00:03Z) - Evaluating and Mitigating IP Infringement in Visual Generative AI [54.24196167576133]
State-of-the-art visual generative models can generate content that bears a striking resemblance to characters protected by intellectual property rights.
This happens when the input prompt contains the character's name or even just descriptive details about their characteristics.
We develop a revised generation paradigm that can identify potentially infringing generated content and prevent IP infringement.
arXiv Detail & Related papers (2024-06-07T06:14:18Z) - Tackling GenAI Copyright Issues: Originality Estimation and Genericization [25.703494724823756]
We propose a genericization method that modifies the outputs of a generative model to make them more generic and less likely to infringe copyright.
As a practical implementation, we introduce PREGen, which combines our genericization method with an existing mitigation technique.
arXiv Detail & Related papers (2024-06-05T14:58:32Z) - LLMs and Memorization: On Quality and Specificity of Copyright Compliance [0.0]
Memorization in large language models (LLMs) is a growing concern.
LLMs have been shown to easily reproduce parts of their training data, including copyrighted work.
This is an important problem to solve, as it may violate existing copyright laws as well as the European AI Act.
arXiv Detail & Related papers (2024-05-28T18:01:52Z) - ©Plug-in Authorization for Human Content Copyright Protection in Text-to-Image Model [71.47762442337948]
State-of-the-art models create high-quality content without crediting original creators.
We propose the copyright Plug-in Authorization framework, introducing three operations: addition, extraction, and combination.
Extraction allows creators to reclaim copyright from infringing models, and combination enables users to merge different copyright plug-ins.
arXiv Detail & Related papers (2024-04-18T07:48:00Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.