GOAL: A Generalist Combinatorial Optimization Agent Learning
- URL: http://arxiv.org/abs/2406.15079v2
- Date: Thu, 24 Oct 2024 16:52:15 GMT
- Title: GOAL: A Generalist Combinatorial Optimization Agent Learning
- Authors: Darko Drakulic, Sofia Michel, Jean-Marc Andreoli,
- Abstract summary: GOAL is a model capable of efficiently solving multiple hard optimization problems (COPs)
Goal consists of a single backbone plus light-weight problem-specific adapters for input and output processing.
We show that GOAL is only slightly inferior to the specialized baselines while being the first multi-task model that solves a wide range of COPs.
- Score: 0.05461938536945722
- License:
- Abstract: Machine Learning-based heuristics have recently shown impressive performance in solving a variety of hard combinatorial optimization problems (COPs). However they generally rely on a separate neural model, specialized and trained for each single problem. Any variation of a problem requires adjustment of its model and re-training from scratch. In this paper, we propose GOAL (for Generalist combinatorial Optimization Agent Learning), a generalist model capable of efficiently solving multiple COPs and which can be fine-tuned to solve new COPs. GOAL consists of a single backbone plus light-weight problem-specific adapters for input and output processing. The backbone is based on a new form of mixed-attention blocks which allows to handle problems defined on graphs with arbitrary combinations of node, edge and instance-level features. Additionally, problems which involve heterogeneous types of nodes or edges are handled through a novel multi-type transformer architecture, where the attention blocks are duplicated to attend the meaningful combinations of types while relying on the same shared parameters. We train GOAL on a set of routing, scheduling and classic graph problems and show that it is only slightly inferior to the specialized baselines while being the first multi-task model that solves a wide range of COPs. Finally we showcase the strong transfer learning capacity of GOAL by fine-tuning it on several new problems. Our code is available at https://github.com/naver/goal-co/.
Related papers
- Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - Towards a Generic Representation of Combinatorial Problems for
Learning-Based Approaches [2.2526069385327316]
In recent years, there has been a growing interest in using learning-based approaches for solving problems.
The challenge lies in encoding the targeted problems into a structure compatible with the learning algorithm.
Many existing works have proposed problem-specific representations, often in the form of a graph, to leverage the advantages of textitgraph neural networks
This paper advocates for a fully generic representation of problems for learning-based approaches.
arXiv Detail & Related papers (2024-03-09T22:28:46Z) - Symmetry-preserving graph attention network to solve routing problems at
multiple resolutions [1.9304772860080408]
We introduce the first-ever completely equivariant model and training to solve problems.
It is essential to capture the multiscale structure of the input graph.
We propose a Multiresolution scheme in combination with Equi Graph Attention network (mEGAT) architecture.
arXiv Detail & Related papers (2023-10-24T06:22:20Z) - Learning to Branch in Combinatorial Optimization with Graph Pointer
Networks [17.729352126574902]
This paper proposes a graph pointer network model for learning the variable selection policy in the branch-and-bound.
The proposed model, which combines the graph neural network and the pointer mechanism, can effectively map from the solver state to the branching variable decisions.
arXiv Detail & Related papers (2023-07-04T01:56:07Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - BASE Layers: Simplifying Training of Large, Sparse Models [53.98145464002843]
We introduce a new balanced assignment of experts (BASE) layer for large language models.
Sparse layers can dramatically improve the efficiency of training and inference by routing each token to specialized expert modules.
We formulate token-to-expert allocation as a linear assignment problem, allowing an optimal assignment in which each expert receives an equal number of tokens.
arXiv Detail & Related papers (2021-03-30T23:08:32Z) - Reversible Action Design for Combinatorial Optimization with
Reinforcement Learning [35.50454156611722]
Reinforcement learning (RL) has recently emerged as a new framework to tackle these problems.
We propose a general RL framework that not only exhibits state-of-the-art empirical performance but also generalizes to a variety class of COPs.
arXiv Detail & Related papers (2021-02-14T18:05:42Z) - Zero Training Overhead Portfolios for Learning to Solve Combinatorial
Problems [21.411742165753456]
ZTop is a simple yet effective model selection and ensemble mechanism for learning to solve problems.
We show how ZTopping, using a ZTop ensemble strategy with a given deep learning approach, can significantly improve the performance of the current state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2021-02-05T05:23:26Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.