Unsupervised Morphological Tree Tokenizer
- URL: http://arxiv.org/abs/2406.15245v1
- Date: Fri, 21 Jun 2024 15:35:49 GMT
- Title: Unsupervised Morphological Tree Tokenizer
- Authors: Qingyang Zhu, Xiang Hu, Pengyu Ji, Wei Wu, Kewei Tu,
- Abstract summary: We introduce morphological structure guidance to tokenization and propose a deep model to induce character-level structures of words.
Specifically, the deep model jointly encodes internal structures and representations of words with a mechanism named $textitOverriding$ to ensure the indecomposability of morphemes.
Based on the induced structures, our algorithm tokenizes words through vocabulary matching in a top-down manner.
- Score: 36.584680344291556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a cornerstone in language modeling, tokenization involves segmenting text inputs into pre-defined atomic units. Conventional statistical tokenizers often disrupt constituent boundaries within words, thereby corrupting semantic information. To address this drawback, we introduce morphological structure guidance to tokenization and propose a deep model to induce character-level structures of words. Specifically, the deep model jointly encodes internal structures and representations of words with a mechanism named $\textit{MorphOverriding}$ to ensure the indecomposability of morphemes. By training the model with self-supervised objectives, our method is capable of inducing character-level structures that align with morphological rules without annotated training data. Based on the induced structures, our algorithm tokenizes words through vocabulary matching in a top-down manner. Empirical results indicate that the proposed method effectively retains complete morphemes and outperforms widely adopted methods such as BPE and WordPiece on both morphological segmentation tasks and language modeling tasks. The code will be released later.
Related papers
- Morphological evaluation of subwords vocabulary used by BETO language model [0.1638581561083717]
Subword tokenization algorithms are more efficient and can independently build the necessary vocabulary of words and subwords without human intervention.
In previous research, we proposed a method to assess the morphological quality of vocabularies, focusing on the overlap between these vocabularies and the morphemes of a given language.
By applying this method to vocabularies created by three subword tokenization algorithms, BPE, Wordpiece, and Unigram, we concluded that these vocabularies generally exhibit very low morphological quality.
This evaluation helps clarify the algorithm used by the tokenizer, that is, Wordpiece, given the inconsistencies between the authors' claims
arXiv Detail & Related papers (2024-10-03T08:07:14Z) - Towards a theory of how the structure of language is acquired by deep neural networks [6.363756171493383]
We use a tree-like generative model that captures many of the hierarchical structures found in natural languages.
We show that token-token correlations can be used to build a representation of the grammar's hidden variables.
We conjecture that the relationship between training set size and effective range of correlations holds beyond our synthetic datasets.
arXiv Detail & Related papers (2024-05-28T17:01:22Z) - From Characters to Words: Hierarchical Pre-trained Language Model for
Open-vocabulary Language Understanding [22.390804161191635]
Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens.
This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes.
We introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach.
arXiv Detail & Related papers (2023-05-23T23:22:20Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
Transformer-based language models are effective but complex, and understanding their inner workings is a significant challenge.
We introduce a family of synthetic CFGs that produce hierarchical rules, capable of generating lengthy sentences.
We demonstrate that generative models like GPT can accurately learn this CFG language and generate sentences based on it.
arXiv Detail & Related papers (2023-05-23T04:28:16Z) - Inducing Character-level Structure in Subword-based Language Models with
Type-level Interchange Intervention Training [36.19870483966741]
We develop a causal intervention framework to learn robust and interpretable character representations inside subword-based language models.
Our method treats each character as a typed variable in a causal model and learns such causal structures.
We additionally introduce a suite of character-level tasks that systematically vary in their dependence on meaning and sequence-level context.
arXiv Detail & Related papers (2022-12-19T22:37:46Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z) - Evaluating the Morphosyntactic Well-formedness of Generated Texts [88.20502652494521]
We propose L'AMBRE -- a metric to evaluate the morphosyntactic well-formedness of text.
We show the effectiveness of our metric on the task of machine translation through a diachronic study of systems translating into morphologically-rich languages.
arXiv Detail & Related papers (2021-03-30T18:02:58Z) - Unsupervised Distillation of Syntactic Information from Contextualized
Word Representations [62.230491683411536]
We tackle the task of unsupervised disentanglement between semantics and structure in neural language representations.
To this end, we automatically generate groups of sentences which are structurally similar but semantically different.
We demonstrate that our transformation clusters vectors in space by structural properties, rather than by lexical semantics.
arXiv Detail & Related papers (2020-10-11T15:13:18Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - A Hybrid Approach to Dependency Parsing: Combining Rules and Morphology
with Deep Learning [0.0]
We propose two approaches to dependency parsing especially for languages with restricted amount of training data.
Our first approach combines a state-of-the-art deep learning-based with a rule-based approach and the second one incorporates morphological information into the network.
The proposed methods are developed for Turkish, but can be adapted to other languages as well.
arXiv Detail & Related papers (2020-02-24T08:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.