JobFair: A Framework for Benchmarking Gender Hiring Bias in Large Language Models
- URL: http://arxiv.org/abs/2406.15484v1
- Date: Mon, 17 Jun 2024 09:15:57 GMT
- Title: JobFair: A Framework for Benchmarking Gender Hiring Bias in Large Language Models
- Authors: Ze Wang, Zekun Wu, Xin Guan, Michael Thaler, Adriano Koshiyama, Skylar Lu, Sachin Beepath, Ediz Ertekin Jr., Maria Perez-Ortiz,
- Abstract summary: This paper presents a novel framework for benchmarking hierarchical gender hiring bias in Large Language Models (LLMs) for resume scoring.
We introduce a framework using a real, anonymized resume dataset from the Healthcare, Finance, and Construction industries.
Second, we propose novel statistical and computational hiring bias metrics based on a counterfactual approach.
Third, we analyze hiring biases in ten state-of-the-art LLMs.
- Score: 12.12628747941818
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a novel framework for benchmarking hierarchical gender hiring bias in Large Language Models (LLMs) for resume scoring, revealing significant issues of reverse bias and overdebiasing. Our contributions are fourfold: First, we introduce a framework using a real, anonymized resume dataset from the Healthcare, Finance, and Construction industries, meticulously used to avoid confounding factors. It evaluates gender hiring biases across hierarchical levels, including Level bias, Spread bias, Taste-based bias, and Statistical bias. This framework can be generalized to other social traits and tasks easily. Second, we propose novel statistical and computational hiring bias metrics based on a counterfactual approach, including Rank After Scoring (RAS), Rank-based Impact Ratio, Permutation Test-Based Metrics, and Fixed Effects Model-based Metrics. These metrics, rooted in labor economics, NLP, and law, enable holistic evaluation of hiring biases. Third, we analyze hiring biases in ten state-of-the-art LLMs. Six out of ten LLMs show significant biases against males in healthcare and finance. An industry-effect regression reveals that the healthcare industry is the most biased against males. GPT-4o and GPT-3.5 are the most biased models, showing significant bias in all three industries. Conversely, Gemini-1.5-Pro, Llama3-8b-Instruct, and Llama3-70b-Instruct are the least biased. The hiring bias of all LLMs, except for Llama3-8b-Instruct and Claude-3-Sonnet, remains consistent regardless of random expansion or reduction of resume content. Finally, we offer a user-friendly demo to facilitate adoption and practical application of the framework.
Related papers
- Robustly Improving LLM Fairness in Realistic Settings via Interpretability [0.16843915833103415]
Anti-bias prompts fail when realistic contextual details are introduced.<n>We find that adding realistic context such as company names, culture descriptions from public careers pages, and selective hiring constraints induces significant racial and gender biases.<n>Our internal bias mitigation identifies race and gender-correlated directions and applies affine concept editing at inference time.
arXiv Detail & Related papers (2025-06-12T17:34:38Z) - FAIRE: Assessing Racial and Gender Bias in AI-Driven Resume Evaluations [3.9681649902019136]
We introduce a benchmark, FAIRE, to test for racial and gender bias in large language models (LLMs) used to evaluate resumes.
Our findings reveal that while every model exhibits some degree of bias, the magnitude and direction vary considerably.
It highlights the urgent need for strategies to reduce bias in AI-driven recruitment.
arXiv Detail & Related papers (2025-04-02T07:11:30Z) - Who Does the Giant Number Pile Like Best: Analyzing Fairness in Hiring Contexts [5.111540255111445]
Race-based differences appear in approximately 10% of generated summaries, while gender-based differences occur in only 1%.
Retrieval models demonstrate comparable sensitivity to non-demographic changes, suggesting that fairness issues may stem from general brittleness issues.
arXiv Detail & Related papers (2025-01-08T07:28:10Z) - The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
We center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias.
Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning.
We conclude with recommendations tailored to DPO and broader alignment practices.
arXiv Detail & Related papers (2024-11-06T06:50:50Z) - Revealing and Reducing Gender Biases in Vision and Language Assistants (VLAs) [82.57490175399693]
We study gender bias in 22 popular image-to-text vision-language assistants (VLAs)
Our results show that VLAs replicate human biases likely present in the data, such as real-world occupational imbalances.
To eliminate the gender bias in these models, we find that finetuning-based debiasing methods achieve the best tradeoff between debiasing and retaining performance on downstream tasks.
arXiv Detail & Related papers (2024-10-25T05:59:44Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
Large language models (LLMs) have exhibited remarkable capabilities in natural language generation, but have also been observed to magnify societal biases.
GenderCARE is a comprehensive framework that encompasses innovative Criteria, bias Assessment, Reduction techniques, and Evaluation metrics.
arXiv Detail & Related papers (2024-08-22T15:35:46Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
This paper introduces the GenderBias-emphVL benchmark to evaluate occupation-related gender bias in Large Vision-Language Models.
Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs and state-of-the-art commercial APIs.
Our findings reveal widespread gender biases in existing LVLMs.
arXiv Detail & Related papers (2024-06-30T05:55:15Z) - Locating and Mitigating Gender Bias in Large Language Models [40.78150878350479]
Large language models (LLM) are pre-trained on extensive corpora to learn facts and human cognition which contain human preferences.
This process can inadvertently lead to these models acquiring biases and prevalent stereotypes in society.
We propose the LSDM (Least Square Debias Method), a knowledge-editing based method for mitigating gender bias in occupational pronouns.
arXiv Detail & Related papers (2024-03-21T13:57:43Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - Fairness in AI Systems: Mitigating gender bias from language-vision
models [0.913755431537592]
We study the extent of the impact of gender bias in existing datasets.
We propose a methodology to mitigate its impact in caption based language vision models.
arXiv Detail & Related papers (2023-05-03T04:33:44Z) - Causally Testing Gender Bias in LLMs: A Case Study on Occupational Bias [33.99768156365231]
We introduce a causal formulation for bias measurement in generative language models.
We propose a benchmark called OccuGender, with a bias-measuring procedure to investigate occupational gender bias.
The results show that these models exhibit substantial occupational gender bias.
arXiv Detail & Related papers (2022-12-20T22:41:24Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.