Few-shot Knowledge Graph Relational Reasoning via Subgraph Adaptation
- URL: http://arxiv.org/abs/2406.15507v1
- Date: Wed, 19 Jun 2024 21:40:35 GMT
- Title: Few-shot Knowledge Graph Relational Reasoning via Subgraph Adaptation
- Authors: Haochen Liu, Song Wang, Chen Chen, Jundong Li,
- Abstract summary: Few-shot Knowledge Graph (KG) Reasoning aims to predict unseen triplets (i.e., query triplets) for rare relations in KGs.
We propose SAFER (Subgraph Adaptation for Few-shot Reasoning), a novel approach that effectively adapts the information in contextualized graphs to various subgraphs.
- Score: 51.47994645529258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot Knowledge Graph (KG) Relational Reasoning aims to predict unseen triplets (i.e., query triplets) for rare relations in KGs, given only several triplets of these relations as references (i.e., support triplets). This task has gained significant traction due to the widespread use of knowledge graphs in various natural language processing applications. Previous approaches have utilized meta-training methods and manually constructed meta-relation sets to tackle this task. Recent efforts have focused on edge-mask-based methods, which exploit the structure of the contextualized graphs of target triplets (i.e., a subgraph containing relevant triplets in the KG). However, existing edge-mask-based methods have limitations in extracting insufficient information from KG and are highly influenced by spurious information in KG. To overcome these challenges, we propose SAFER (Subgraph Adaptation for Few-shot Relational Reasoning), a novel approach that effectively adapts the information in contextualized graphs to various subgraphs generated from support and query triplets to perform the prediction. Specifically, SAFER enables the extraction of more comprehensive information from support triplets while minimizing the impact of spurious information when predicting query triplets. Experimental results on three prevalent datasets demonstrate the superiority of our proposed framework SAFER.
Related papers
- Leveraging Predicate and Triplet Learning for Scene Graph Generation [31.09787444957997]
Scene Graph Generation (SGG) aims to identify entities and predict the relationship triplets.
We propose a Dual-granularity Relation Modeling (DRM) network to leverage fine-grained triplet cues besides the coarse-grained predicate ones.
Our method establishes new state-of-the-art performance on Visual Genome, Open Image, and GQA datasets.
arXiv Detail & Related papers (2024-06-04T07:23:41Z) - Anchoring Path for Inductive Relation Prediction in Knowledge Graphs [69.81600732388182]
APST takes both APs and CPs as the inputs of a unified Sentence Transformer architecture.
We evaluate APST on three public datasets and achieve state-of-the-art (SOTA) performance in 30 of 36 transductive, inductive, and few-shot experimental settings.
arXiv Detail & Related papers (2023-12-21T06:02:25Z) - Knowledge Graph Refinement based on Triplet BERT-Networks [0.0]
This paper adopts a transformer-based triplet network creating an embedding space that clusters the information about an entity or relation in the Knowledge Graph.
It creates textual sequences from facts and fine-tunes a triplet network of pre-trained transformer-based language models.
We show that GilBERT achieves better or comparable results to the state-of-the-art performance on these two refinement tasks.
arXiv Detail & Related papers (2022-11-18T19:01:21Z) - Walk-and-Relate: A Random-Walk-based Algorithm for Representation
Learning on Sparse Knowledge Graphs [5.444459446244819]
We propose an efficient method to augment the number of triplets to address the problem of data sparsity.
We also provide approaches to accurately and efficiently filter out informative metapaths from the possible set of metapaths.
The proposed approaches are model-agnostic, and the augmented training dataset can be used with any KG embedding approach out of the box.
arXiv Detail & Related papers (2022-09-19T05:35:23Z) - Hierarchical Relational Learning for Few-Shot Knowledge Graph Completion [25.905974480733562]
We propose a hierarchical relational learning method (HiRe) for few-shot KG completion.
By jointly capturing three levels of relational information, HiRe can effectively learn and refine the meta representation of few-shot relations.
Experiments on two benchmark datasets validate the superiority of HiRe against other state-of-the-art methods.
arXiv Detail & Related papers (2022-09-02T17:57:03Z) - A Review of Knowledge Graph Completion [0.0]
Information extraction methods proved to be effective at triple extraction from structured or unstructured data.
Most of the current knowledge graphs are incomplete.
In order to use KGs in downstream tasks, it is desirable to predict missing links in KGs.
arXiv Detail & Related papers (2022-08-24T16:42:59Z) - Repurposing Knowledge Graph Embeddings for Triple Representation via
Weak Supervision [77.34726150561087]
Current methods learn triple embeddings from scratch without utilizing entity and predicate embeddings from pre-trained models.
We develop a method for automatically sampling triples from a knowledge graph and estimating their pairwise similarities from pre-trained embedding models.
These pairwise similarity scores are then fed to a Siamese-like neural architecture to fine-tune triple representations.
arXiv Detail & Related papers (2022-08-22T14:07:08Z) - Semantic Compositional Learning for Low-shot Scene Graph Generation [122.51930904132685]
Many scene graph generation (SGG) models solely use the limited annotated relation triples for training.
We propose a novel semantic compositional learning strategy that makes it possible to construct additional, realistic relation triples.
For three recent SGG models, adding our strategy improves their performance by close to 50%, and all of them substantially exceed the current state-of-the-art.
arXiv Detail & Related papers (2021-08-19T10:13:55Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.