System Description for the Displace Speaker Diarization Challenge 2023
- URL: http://arxiv.org/abs/2406.15516v1
- Date: Thu, 20 Jun 2024 21:40:02 GMT
- Title: System Description for the Displace Speaker Diarization Challenge 2023
- Authors: Ali Aliyev,
- Abstract summary: This paper describes our solution for the Diarization of Speaker and Language in Conversational Environments Challenge (Displace 2023)
We used a combination of VAD for finding segfments with speech, Resnet architecture based CNN for feature extraction from these segments, and spectral clustering for features clustering.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes our solution for the Diarization of Speaker and Language in Conversational Environments Challenge (Displace 2023). We used a combination of VAD for finding segfments with speech, Resnet architecture based CNN for feature extraction from these segments, and spectral clustering for features clustering. Even though it was not trained with using Hindi, the described algorithm achieves the following metrics: DER 27. 1% and DER 27. 4%, on the development and phase-1 evaluation parts of the dataset, respectively.
Related papers
- The Second DISPLACE Challenge : DIarization of SPeaker and LAnguage in Conversational Environments [28.460119283649913]
The dataset contains 158 hours of speech, consisting of both supervised and unsupervised mono-channel far-field recordings.
12 hours of close-field mono-channel recordings were provided for the ASR track conducted on 5 Indian languages.
We have compared our baseline models and the team's performances on evaluation data of DISPLACE-2023 to emphasize the advancements made in this second version of the challenge.
arXiv Detail & Related papers (2024-06-13T17:32:32Z) - The MuSe 2024 Multimodal Sentiment Analysis Challenge: Social Perception and Humor Recognition [64.5207572897806]
The Multimodal Sentiment Analysis Challenge (MuSe) 2024 addresses two contemporary multimodal affect and sentiment analysis problems.
In the Social Perception Sub-Challenge (MuSe-Perception), participants will predict 16 different social attributes of individuals.
The Cross-Cultural Humor Detection Sub-Challenge (MuSe-Humor) dataset expands upon the Passau Spontaneous Football Coach Humor dataset.
arXiv Detail & Related papers (2024-06-11T22:26:20Z) - USTHB at NADI 2023 shared task: Exploring Preprocessing and Feature
Engineering Strategies for Arabic Dialect Identification [0.0]
We investigate the effects of surface preprocessing, morphological preprocessing, FastText vector model, and the weighted concatenation of TF-IDF features.
During the evaluation phase, our system demonstrates noteworthy results, achieving an F1 score of 62.51%.
arXiv Detail & Related papers (2023-12-16T20:23:53Z) - Mavericks at NADI 2023 Shared Task: Unravelling Regional Nuances through
Dialect Identification using Transformer-based Approach [0.0]
We highlight our methodology for subtask 1 which deals with country-level dialect identification.
The task uses the Twitter dataset (TWT-2023) that encompasses 18 dialects for the multi-class classification problem.
We achieved an F1-score of 76.65 (11th rank on the leaderboard) on the test dataset.
arXiv Detail & Related papers (2023-11-30T17:37:56Z) - Hierarchical Audio-Visual Information Fusion with Multi-label Joint
Decoding for MER 2023 [51.95161901441527]
In this paper, we propose a novel framework for recognizing both discrete and dimensional emotions.
Deep features extracted from foundation models are used as robust acoustic and visual representations of raw video.
Our final system achieves state-of-the-art performance and ranks third on the leaderboard on MER-MULTI sub-challenge.
arXiv Detail & Related papers (2023-09-11T03:19:10Z) - Transsion TSUP's speech recognition system for ASRU 2023 MADASR
Challenge [11.263392524468625]
The system focuses on adapting ASR models for low-resource Indian languages.
The proposed method achieved word error rates (WER) of 24.17%, 24.43%, 15.97%, and 15.97% for Bengali language in the four tracks, and WER of 19.61%, 19.54%, 15.48%, and 15.48% for Bhojpuri language in the four tracks.
arXiv Detail & Related papers (2023-07-20T00:55:01Z) - ESPnet-ST IWSLT 2021 Offline Speech Translation System [56.83606198051871]
This paper describes the ESPnet-ST group's IWSLT 2021 submission in the offline speech translation track.
This year we made various efforts on training data, architecture, and audio segmentation.
Our best E2E system combined all the techniques with model ensembling and achieved 31.4 BLEU.
arXiv Detail & Related papers (2021-07-01T17:49:43Z) - USTC-NELSLIP System Description for DIHARD-III Challenge [78.40959509760488]
The innovation of our system lies in the combination of various front-end techniques to solve the diarization problem.
Our best system achieved DERs of 11.30% in track 1 and 16.78% in track 2 on evaluation set.
arXiv Detail & Related papers (2021-03-19T07:00:51Z) - The HUAWEI Speaker Diarisation System for the VoxCeleb Speaker
Diarisation Challenge [6.6238321827660345]
This paper describes system setup of our submission to speaker diarisation track (Track 4) of VoxCeleb Speaker Recognition Challenge 2020.
Our diarisation system consists of a well-trained neural network based speech enhancement model as pre-processing front-end of input speech signals.
arXiv Detail & Related papers (2020-10-22T12:42:07Z) - Conversational Semantic Parsing [50.954321571100294]
Session-based properties such as co-reference resolution and context carryover are processed downstream in a pipelined system.
We release a new session-based, compositional task-oriented parsing dataset of 20k sessions consisting of 60k utterances.
We propose a new family of Seq2Seq models for the session-based parsing above, which achieve better or comparable performance to the current state-of-the-art on ATIS, SNIPS, TOP and DSTC2.
arXiv Detail & Related papers (2020-09-28T22:08:00Z) - The NTT DCASE2020 Challenge Task 6 system: Automated Audio Captioning
with Keywords and Sentence Length Estimation [49.41766997393417]
This report describes the system participating to the Detection and Classification of Acoustic Scenes and Events (DCASE) 2020 Challenge, Task 6.
Our submission focuses on solving two indeterminacy problems in automated audio captioning: word selection indeterminacy and sentence length indeterminacy.
We simultaneously solve the main caption generation and sub indeterminacy problems by estimating keywords and sentence length through multi-task learning.
arXiv Detail & Related papers (2020-07-01T04:26:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.