BrowNNe: Brownian Nonlocal Neurons & Activation Functions
- URL: http://arxiv.org/abs/2406.15617v1
- Date: Fri, 21 Jun 2024 19:40:30 GMT
- Title: BrowNNe: Brownian Nonlocal Neurons & Activation Functions
- Authors: Sriram Nagaraj, Truman Hickok,
- Abstract summary: We show that Brownian neural activation functions in low-training data beats the ReLU counterpart.
Our experiments indicate the superior capabilities of Brownian neural activation functions in low-training data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is generally thought that the use of stochastic activation functions in deep learning architectures yield models with superior generalization abilities. However, a sufficiently rigorous statement and theoretical proof of this heuristic is lacking in the literature. In this paper, we provide several novel contributions to the literature in this regard. Defining a new notion of nonlocal directional derivative, we analyze its theoretical properties (existence and convergence). Second, using a probabilistic reformulation, we show that nonlocal derivatives are epsilon-sub gradients, and derive sample complexity results for convergence of stochastic gradient descent-like methods using nonlocal derivatives. Finally, using our analysis of the nonlocal gradient of Holder continuous functions, we observe that sample paths of Brownian motion admit nonlocal directional derivatives, and the nonlocal derivatives of Brownian motion are seen to be Gaussian processes with computable mean and standard deviation. Using the theory of nonlocal directional derivatives, we solve a highly nondifferentiable and nonconvex model problem of parameter estimation on image articulation manifolds. Using Brownian motion infused ReLU activation functions with the nonlocal gradient in place of the usual gradient during backpropagation, we also perform experiments on multiple well-studied deep learning architectures. Our experiments indicate the superior generalization capabilities of Brownian neural activation functions in low-training data regimes, where the use of stochastic neurons beats the deterministic ReLU counterpart.
Related papers
- Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
We introduce a new framework for approximate Bayesian uncertainty quantification in neural operators.
Our approach can be interpreted as a probabilistic analogue of the concept of currying from functional programming.
We showcase the efficacy of our approach through applications to different types of partial differential equations.
arXiv Detail & Related papers (2024-06-07T16:43:54Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Gradient is All You Need? [0.0]
In this paper we provide a novel analytical perspective on the theoretical understanding of learning algorithms by interpreting consensus-based gradient-based optimization (CBO)
Our results prove the intrinsic power of CBO to alleviate the complexities of the nonlocal landscape function.
arXiv Detail & Related papers (2023-06-16T11:30:55Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Gradient flow in the gaussian covariate model: exact solution of
learning curves and multiple descent structures [14.578025146641806]
We provide a full and unified analysis of the whole time-evolution of the generalization curve.
We show that our theoretical predictions adequately match the learning curves obtained by gradient descent over realistic datasets.
arXiv Detail & Related papers (2022-12-13T17:39:18Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Stochastic Langevin Differential Inclusions with Applications to Machine Learning [5.274477003588407]
We show some foundational results regarding the flow and properties of Langevin-type Differential Inclusions.
In particular, we show strong existence of the solution, as well as an canonical- minimization of the free-energy functional.
arXiv Detail & Related papers (2022-06-23T08:29:17Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
We provide algorithms for constructing bias-aware designs for linear functionals.
We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise.
arXiv Detail & Related papers (2022-05-26T20:56:25Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.