Predicting Individual Depression Symptoms from Acoustic Features During Speech
- URL: http://arxiv.org/abs/2406.16000v1
- Date: Sun, 23 Jun 2024 03:26:47 GMT
- Title: Predicting Individual Depression Symptoms from Acoustic Features During Speech
- Authors: Sebastian Rodriguez, Sri Harsha Dumpala, Katerina Dikaios, Sheri Rempel, Rudolf Uher, Sageev Oore,
- Abstract summary: Current automatic depression detection systems provide predictions directly without relying on the individual symptoms/items of depression as denoted in the clinical depression rating scales.
In this work, we make a first step towards using the acoustic features of speech to predict individual items of the depression rating scale before obtaining the final depression prediction.
- Score: 8.592847632589692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current automatic depression detection systems provide predictions directly without relying on the individual symptoms/items of depression as denoted in the clinical depression rating scales. In contrast, clinicians assess each item in the depression rating scale in a clinical setting, thus implicitly providing a more detailed rationale for a depression diagnosis. In this work, we make a first step towards using the acoustic features of speech to predict individual items of the depression rating scale before obtaining the final depression prediction. For this, we use convolutional (CNN) and recurrent (long short-term memory (LSTM)) neural networks. We consider different approaches to learning the temporal context of speech. Further, we analyze two variants of voting schemes for individual item prediction and depression detection. We also include an animated visualization that shows an example of item prediction over time as the speech progresses.
Related papers
- Self-Supervised Embeddings for Detecting Individual Symptoms of Depression [18.43207977841643]
Depression, a prevalent mental health disorder impacting millions globally, demands reliable assessment systems.
We leverage self-supervised learning (SSL)-based speech models to better utilize the small-sized datasets that are frequently encountered in this task.
We show the significance of multi-task learning for identifying depressive symptoms effectively.
arXiv Detail & Related papers (2024-06-25T02:35:37Z) - Speech-based Clinical Depression Screening: An Empirical Study [32.84863235794086]
This study investigates the utility of speech signals for AI-based depression screening across varied interaction scenarios.
participants include depressed patients recruited from the outpatient clinics of Peking University Sixth Hospital.
We extracted acoustic and deep speech features from each participant's segmented recordings.
arXiv Detail & Related papers (2024-06-05T09:43:54Z) - Hierarchical attention interpretation: an interpretable speech-level
transformer for bi-modal depression detection [6.561362931802501]
Depression is a common mental disorder. Automatic depression detection tools using speech, enabled by machine learning, help early screening of depression.
This paper addresses two limitations that may hinder the clinical implementations of such tools: noise resulting from segment-level labelling and a lack of model interpretability.
arXiv Detail & Related papers (2023-09-23T20:48:58Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
This work shows that depression changes the correlation between features extracted from speech.
Using such an insight can improve the training speed and performance of depression detectors based on SVMs and LSTMs.
arXiv Detail & Related papers (2023-07-06T09:54:35Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Pose-based Body Language Recognition for Emotion and Psychiatric Symptom
Interpretation [75.3147962600095]
We propose an automated framework for body language based emotion recognition starting from regular RGB videos.
In collaboration with psychologists, we extend the framework for psychiatric symptom prediction.
Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set.
arXiv Detail & Related papers (2020-10-30T18:45:16Z) - Affective Conditioning on Hierarchical Networks applied to Depression
Detection from Transcribed Clinical Interviews [0.0]
Depression is a mental disorder that impacts not only the subject's mood but also the use of language.
We use a Hierarchical Attention Network to classify interviews of depressed subjects.
We augment the attention layer of our model with a conditioning mechanism on linguistic features, extracted from affective lexica.
arXiv Detail & Related papers (2020-06-04T20:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.