PORT: Preference Optimization on Reasoning Traces
- URL: http://arxiv.org/abs/2406.16061v2
- Date: Tue, 04 Feb 2025 20:29:39 GMT
- Title: PORT: Preference Optimization on Reasoning Traces
- Authors: Salem Lahlou, Abdalgader Abubaker, Hakim Hacid,
- Abstract summary: This paper proposes using preference optimization methods on Chain-of-Thought steps in order to improve the mathematical reasoning performances of language models.
Our approach leads to increased accuracy on the GSM8K and AQuA-RAT mathematical reasoning benchmarks for Falcon2-11B and Mistral-7B.
The improved abilities transfer to non-mathematical tasks, including the ARC benchmark and symbolic reasoning challenges.
- Score: 1.7292887546437081
- License:
- Abstract: Preference optimization methods have been successfully applied to improve not only the alignment of large language models (LLMs) with human values, but also specific natural language tasks such as summarization and stylistic continuations. This paper proposes using preference optimization methods on Chain-of-Thought steps in order to improve the mathematical reasoning performances of language models. While the chosen answers are obtained from datasets that include reasoning traces, we propose two complementary schemes for generating rejected answers: weak LLM prompting, and digit corruption. Our approach leads to increased accuracy on the GSM8K and AQuA-RAT mathematical reasoning benchmarks for Falcon2-11B and Mistral-7B. Additionally, the improved abilities transfer to non-mathematical tasks, including the ARC benchmark and symbolic reasoning challenges. For example, our method can lead to up to relative 8.47% and 18.73% increases in accuracy on the GSM8K and AQuA benchmarks respectively, without any extra annotations. This work suggests that the path towards better language reasoning abilities goes through spending resources on creating high-quality datasets of reasoning traces.
Related papers
- Preference Optimization for Reasoning with Pseudo Feedback [100.62603571434167]
We introduce a novel approach to generate pseudo feedback for reasoning tasks by framing the labeling of solutions as an evaluation against associated test cases.
We conduct experiments on both mathematical reasoning and coding tasks using pseudo feedback for preference optimization, and observe improvements across both tasks.
arXiv Detail & Related papers (2024-11-25T12:44:02Z) - Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps.
We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution.
We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures.
arXiv Detail & Related papers (2024-11-06T22:02:30Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
In reasoning tasks, even a minor error can cascade into inaccurate results.
We develop a method that avoids introducing external resources, relying instead on perturbations to the input.
Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks.
arXiv Detail & Related papers (2024-03-04T16:21:54Z) - MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible
Pipeline [12.186691561822256]
We postulate that the inherent nature of large language models (LLMs) presents challenges in modeling mathematical reasoning.
This paper introduces a novel math dataset, enhanced with a capability to utilize a Python code interpreter.
We propose a tentative, easily replicable protocol for the fine-tuning of math-specific LLMs.
arXiv Detail & Related papers (2024-01-16T08:08:01Z) - Making Large Language Models Better Reasoners with Step-Aware Verifier [49.16750018427259]
DIVERSE (Diverse Verifier on Reasoning Step) is a novel approach that further enhances the reasoning capability of language models.
We evaluate DIVERSE on the latest language model code-davinci and show that it achieves new state-of-the-art results on six of eight reasoning benchmarks.
arXiv Detail & Related papers (2022-06-06T03:38:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.