A Simple Framework for Open-Vocabulary Zero-Shot Segmentation
- URL: http://arxiv.org/abs/2406.16085v2
- Date: Mon, 1 Jul 2024 06:33:12 GMT
- Title: A Simple Framework for Open-Vocabulary Zero-Shot Segmentation
- Authors: Thomas Stegmüller, Tim Lebailly, Nikola Dukic, Behzad Bozorgtabar, Tinne Tuytelaars, Jean-Philippe Thiran,
- Abstract summary: SimZSS is a framework for open-vocabulary Zero-Shot segmentation.
It exploits the discrete nature of text and linguistic knowledge to pinpoint local concepts within captions.
SimZSS achieves state-of-the-art results on 7 out of 8 benchmark datasets in less than 15 minutes.
- Score: 36.01531912271202
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Zero-shot classification capabilities naturally arise in models trained within a vision-language contrastive framework. Despite their classification prowess, these models struggle in dense tasks like zero-shot open-vocabulary segmentation. This deficiency is often attributed to the absence of localization cues in captions and the intertwined nature of the learning process, which encompasses both image representation learning and cross-modality alignment. To tackle these issues, we propose SimZSS, a Simple framework for open-vocabulary Zero-Shot Segmentation. The method is founded on two key principles: i) leveraging frozen vision-only models that exhibit spatial awareness while exclusively aligning the text encoder and ii) exploiting the discrete nature of text and linguistic knowledge to pinpoint local concepts within captions. By capitalizing on the quality of the visual representations, our method requires only image-caption pairs datasets and adapts to both small curated and large-scale noisy datasets. When trained on COCO Captions across 8 GPUs, SimZSS achieves state-of-the-art results on 7 out of 8 benchmark datasets in less than 15 minutes.
Related papers
- DINOv2 Meets Text: A Unified Framework for Image- and Pixel-Level Vision-Language Alignment [20.953645420787527]
We train a CLIP-like model with only a fraction of the computational cost compared to CLIP.
We achieve state-of-the-art results in zero-shot classification and open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2024-12-20T20:46:48Z) - Grounding Descriptions in Images informs Zero-Shot Visual Recognition [47.66166611138081]
We propose GRAIN, a new pretraining strategy aimed at aligning representations at both fine and coarse levels simultaneously.
We demonstrate the enhanced zero-shot performance of our model compared to current state-of-the art methods.
arXiv Detail & Related papers (2024-12-05T18:52:00Z) - Mining Fine-Grained Image-Text Alignment for Zero-Shot Captioning via
Text-Only Training [14.340740609933437]
We propose a novel zero-shot image captioning framework with text-only training to reduce the modality gap.
In particular, we introduce a subregion feature aggregation to leverage local region information.
We extend our framework to build a zero-shot VQA pipeline, demonstrating its generality.
arXiv Detail & Related papers (2024-01-04T16:43:46Z) - Grounding Everything: Emerging Localization Properties in
Vision-Language Transformers [51.260510447308306]
We show that pretrained vision-language (VL) models allow for zero-shot open-vocabulary object localization without any fine-tuning.
We propose a Grounding Everything Module (GEM) that generalizes the idea of value-value attention introduced by CLIPSurgery to a self-self attention path.
We evaluate the proposed GEM framework on various benchmark tasks and datasets for semantic segmentation.
arXiv Detail & Related papers (2023-12-01T19:06:12Z) - SILC: Improving Vision Language Pretraining with Self-Distillation [113.50400246862056]
We introduce SILC, a novel framework for vision language pretraining.
SILC improves image-text contrastive learning with the simple addition of local-to-global correspondence learning by self-distillation.
We show that distilling local image features from an exponential moving average (EMA) teacher model significantly improves model performance on dense predictions tasks like detection and segmentation.
arXiv Detail & Related papers (2023-10-20T08:44:47Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
We present ZeroSeg, a novel method that leverages the existing pretrained vision-language model (VL) to train semantic segmentation models.
ZeroSeg overcomes this by distilling the visual concepts learned by VL models into a set of segment tokens, each summarizing a localized region of the target image.
Our approach achieves state-of-the-art performance when compared to other zero-shot segmentation methods under the same training data.
arXiv Detail & Related papers (2023-06-01T08:47:06Z) - Cross-modal Representation Learning for Zero-shot Action Recognition [67.57406812235767]
We present a cross-modal Transformer-based framework, which jointly encodes video data and text labels for zero-shot action recognition (ZSAR)
Our model employs a conceptually new pipeline by which visual representations are learned in conjunction with visual-semantic associations in an end-to-end manner.
Experiment results show our model considerably improves upon the state of the arts in ZSAR, reaching encouraging top-1 accuracy on UCF101, HMDB51, and ActivityNet benchmark datasets.
arXiv Detail & Related papers (2022-05-03T17:39:27Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
It is unclear how to make zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation.
In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP.
Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin.
arXiv Detail & Related papers (2021-12-29T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.