Predefined Prototypes for Intra-Class Separation and Disentanglement
- URL: http://arxiv.org/abs/2406.16145v1
- Date: Sun, 23 Jun 2024 15:52:23 GMT
- Title: Predefined Prototypes for Intra-Class Separation and Disentanglement
- Authors: Antonio Almudévar, Théo Mariotte, Alfonso Ortega, Marie Tahon, Luis Vicente, Antonio Miguel, Eduardo Lleida,
- Abstract summary: Prototypical Learning is based on the idea that there is a point (which we call prototype) around which the embeddings of a class are clustered.
We propose to predefine prototypes following human-specified criteria, which simplify the training pipeline and brings different advantages.
- Score: 10.005120138175206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prototypical Learning is based on the idea that there is a point (which we call prototype) around which the embeddings of a class are clustered. It has shown promising results in scenarios with little labeled data or to design explainable models. Typically, prototypes are either defined as the average of the embeddings of a class or are designed to be trainable. In this work, we propose to predefine prototypes following human-specified criteria, which simplify the training pipeline and brings different advantages. Specifically, in this work we explore two of these advantages: increasing the inter-class separability of embeddings and disentangling embeddings with respect to different variance factors, which can translate into the possibility of having explainable predictions. Finally, we propose different experiments that help to understand our proposal and demonstrate empirically the mentioned advantages.
Related papers
- Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation [7.372346036256517]
Prototypical part learning is emerging as a promising approach for making semantic segmentation interpretable.
We propose a method for interpretable semantic segmentation that leverages multi-scale image representation for prototypical part learning.
Experiments conducted on Pascal VOC, Cityscapes, and ADE20K demonstrate that the proposed method increases model sparsity, improves interpretability over existing prototype-based methods, and narrows the performance gap with the non-interpretable counterpart models.
arXiv Detail & Related papers (2024-09-14T17:52:59Z) - Rethinking Person Re-identification from a Projection-on-Prototypes
Perspective [84.24742313520811]
Person Re-IDentification (Re-ID) as a retrieval task, has achieved tremendous development over the past decade.
We propose a new baseline ProNet, which innovatively reserves the function of the classifier at the inference stage.
Experiments on four benchmarks demonstrate that our proposed ProNet is simple yet effective, and significantly beats previous baselines.
arXiv Detail & Related papers (2023-08-21T13:38:10Z) - Learning to Select Prototypical Parts for Interpretable Sequential Data
Modeling [7.376829794171344]
We propose a Self-Explaining Selective Model (SESM) that uses a linear combination of prototypical concepts to explain its own predictions.
For better interpretability, we design multiple constraints including diversity, stability, and locality as training objectives.
arXiv Detail & Related papers (2022-12-07T01:42:47Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Interpretable Image Classification with Differentiable Prototypes
Assignment [7.660883761395447]
We introduce ProtoPool, an interpretable image classification model with a pool of prototypes shared by the classes.
It is obtained by introducing a fully differentiable assignment of prototypes to particular classes.
We show that ProtoPool obtains state-of-the-art accuracy on the CUB-200-2011 and the Stanford Cars datasets, substantially reducing the number of prototypes.
arXiv Detail & Related papers (2021-12-06T10:03:32Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Prototype Completion for Few-Shot Learning [13.63424509914303]
Few-shot learning aims to recognize novel classes with few examples.
Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning.
We propose a novel prototype completion based meta-learning framework.
arXiv Detail & Related papers (2021-08-11T03:44:00Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
We argue for a broader adoption of prototype-based student networks capable of providing an example-based explanation for their prediction.
We show that our prototype-based networks beyond similarity kernels deliver meaningful explanations and promising outlier detection results without compromising classification accuracy.
arXiv Detail & Related papers (2020-11-11T05:58:17Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.