Thinking beyond Bias: Analyzing Multifaceted Impacts and Implications of AI on Gendered Labour
- URL: http://arxiv.org/abs/2406.16207v1
- Date: Sun, 23 Jun 2024 20:09:53 GMT
- Title: Thinking beyond Bias: Analyzing Multifaceted Impacts and Implications of AI on Gendered Labour
- Authors: Satyam Mohla, Bishnupriya Bagh, Anupam Guha,
- Abstract summary: This paper emphasizes the need to explore AIs broader impacts on gendered labor.
We draw attention to how the AI industry as an integral component of the larger economic structure is transforming the nature of work.
- Score: 1.5839621757142595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence with its multifaceted technologies and integral role in global production significantly impacts gender dynamics particularly in gendered labor. This paper emphasizes the need to explore AIs broader impacts on gendered labor beyond its current emphasis on the generation and perpetuation of epistemic biases. We draw attention to how the AI industry as an integral component of the larger economic structure is transforming the nature of work. It is expanding the prevalence of platform based work models and exacerbating job insecurity particularly for women. Of critical concern is the increasing exclusion of women from meaningful engagement in the digital labor force. This issue often overlooked demands urgent attention from the AI research community. Understanding AIs multifaceted role in gendered labor requires a nuanced examination of economic transformation and its implications for gender equity. By shedding light on these intersections this paper aims to stimulate in depth discussions and catalyze targeted actions aimed at mitigating the gender disparities accentuated by AI driven transformations.
Related papers
- Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.
First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint.
Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - She Works, He Works: A Curious Exploration of Gender Bias in AI-Generated Imagery [0.0]
This paper examines gender bias in AI-generated imagery of construction workers, highlighting discrepancies in the portrayal of male and female figures.
Grounded in Griselda Pollock's theories on visual culture and gender, the analysis reveals that AI models tend to sexualize female figures while portraying male figures as more authoritative and competent.
arXiv Detail & Related papers (2024-07-26T05:56:18Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Unveiling Gender Bias in Terms of Profession Across LLMs: Analyzing and
Addressing Sociological Implications [0.0]
The study examines existing research on gender bias in AI language models and identifies gaps in the current knowledge.
The findings shed light on gendered word associations, language usage, and biased narratives present in the outputs of Large Language Models.
The paper presents strategies for reducing gender bias in LLMs, including algorithmic approaches and data augmentation techniques.
arXiv Detail & Related papers (2023-07-18T11:38:45Z) - Factoring the Matrix of Domination: A Critical Review and Reimagination
of Intersectionality in AI Fairness [55.037030060643126]
Intersectionality is a critical framework that allows us to examine how social inequalities persist.
We argue that adopting intersectionality as an analytical framework is pivotal to effectively operationalizing fairness.
arXiv Detail & Related papers (2023-03-16T21:02:09Z) - Investigating Participation Mechanisms in EU Code Week [68.8204255655161]
Digital competence (DC) is a broad set of skills, attitudes, and knowledge for confident, critical and use of digital technologies.
The aim of the manuscript is to offer a detailed and comprehensive statistical description of Code Week's participation in the EU Member States.
arXiv Detail & Related papers (2022-05-29T19:16:03Z) - For Better or for Worse? A Framework for Critical Analysis of ICT4D for
Women [0.0]
As ICT diffusion widens, there is a persistent threat of widening the gender-based digital divide.
This paper develops a critical research framework for a gender-focused examination of ICT4D studies.
arXiv Detail & Related papers (2021-08-23T05:42:24Z) - Implicit Gender Bias in Computer Science -- A Qualitative Study [3.158346511479111]
Gender diversity in the tech sector is sufficient to create a balanced ratio of men and women.
For many women, access to computer science is hampered by socialization-related, social, cultural and structural obstacles.
The lack of contact in areas of computer science makes it difficult to develop or expand potential interests.
arXiv Detail & Related papers (2021-07-04T13:30:26Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - Beyond STEM, How Can Women Engage Big Data, Analytics, Robotics and
Artificial Intelligence? An Exploratory Analysis of Confidence and
Educational Factors in the Emerging Technology Waves Influencing the Role of,
and Impact Upon, Women [0.0]
The professional participation of women in technology, big data, analytics, artificial intelligence and information systems related domains remains proportionately low.
We identify ways for learning and self-efficacy as key factors, which together lead us to the Advancement of Women in Technology (AWT) insights framework.
Based on the AWT framework, we also proposition principles that can be used to encourage higher professional engagement of women in emerging and advanced technologies.
arXiv Detail & Related papers (2020-03-26T05:12:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.