Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning
- URL: http://arxiv.org/abs/2406.16295v1
- Date: Mon, 24 Jun 2024 03:37:51 GMT
- Title: Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning
- Authors: Zinan Zheng, Yang Liu, Jia Li, Jianhua Yao, Yu Rong,
- Abstract summary: We propose a general Discrete Equivariant Graph Neural Network (DEGNN) that guarantees equivariance to a given discrete point group.
Specifically, we show that such discrete equivariant message passing could be constructed by transforming geometric features into permutation-invariant embeddings.
We show that DEGNN is data efficient, learning with less data, and can generalize across scenarios such as unobserved orientation.
- Score: 39.25135680793105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporating Euclidean symmetries (e.g. rotation equivariance) as inductive biases into graph neural networks has improved their generalization ability and data efficiency in unbounded physical dynamics modeling. However, in various scientific and engineering applications, the symmetries of dynamics are frequently discrete due to the boundary conditions. Thus, existing GNNs either overlook necessary symmetry, resulting in suboptimal representation ability, or impose excessive equivariance, which fails to generalize to unobserved symmetric dynamics. In this work, we propose a general Discrete Equivariant Graph Neural Network (DEGNN) that guarantees equivariance to a given discrete point group. Specifically, we show that such discrete equivariant message passing could be constructed by transforming geometric features into permutation-invariant embeddings. Through relaxing continuous equivariant constraints, DEGNN can employ more geometric feature combinations to approximate unobserved physical object interaction functions. Two implementation approaches of DEGNN are proposed based on ranking or pooling permutation-invariant functions. We apply DEGNN to various physical dynamics, ranging from particle, molecular, crowd to vehicle dynamics. In twenty scenarios, DEGNN significantly outperforms existing state-of-the-art approaches. Moreover, we show that DEGNN is data efficient, learning with less data, and can generalize across scenarios such as unobserved orientation.
Related papers
- Similarity Equivariant Graph Neural Networks for Homogenization of Metamaterials [3.6443770850509423]
Soft, porous mechanical metamaterials exhibit pattern transformations that may have important applications in soft robotics, sound reduction and biomedicine.
We develop a machine learning-based approach that scales favorably to serve as a surrogate model.
We show that this network is more accurate and data-efficient than graph neural networks with fewer symmetries.
arXiv Detail & Related papers (2024-04-26T12:30:32Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
We show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property.
We also offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states.
Our model yields a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-08-25T07:15:58Z) - Spatial Attention Kinetic Networks with E(n)-Equivariance [0.951828574518325]
Neural networks that are equivariant to rotations, translations, reflections, and permutations on n-dimensional geometric space have shown promise in physical modeling.
We propose a simple alternative functional form that uses neurally parametrized linear combinations of edge vectors to achieve equivariance.
We design spatial attention kinetic networks with E(n)-equivariance, or SAKE, which are competitive in many-body system modeling tasks while being significantly faster.
arXiv Detail & Related papers (2023-01-21T05:14:29Z) - Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism [12.008737454250463]
We propose using fusion diagrams, a technique widely employed in simulating SU($2$)-symmetric quantum many-body problems, to design new equivariant components for equivariant neural networks.
When applied to particles within a given local neighborhood, the resulting components, which we term "fusion blocks," serve as universal approximators of any continuous equivariant function.
Our approach, which combines tensor networks with equivariant neural networks, suggests a potentially fruitful direction for designing more expressive equivariant neural networks.
arXiv Detail & Related papers (2022-11-14T16:06:59Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
We propose Graph Mechanics Network (GMN) which is efficient, equivariant and constraint-aware.
GMN represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object.
Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency.
arXiv Detail & Related papers (2022-03-12T14:22:14Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
Graph neural networks (GNNs) are emerging machine learning models on graphs.
Permutation-equivariance and proximity-awareness are two important properties highly desirable for GNNs.
We show that existing GNNs, mostly based on the message-passing mechanism, cannot simultaneously preserve the two properties.
In order to preserve node proximities, we augment the existing GNNs with node representations.
arXiv Detail & Related papers (2020-09-05T16:46:56Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.