UBiSS: A Unified Framework for Bimodal Semantic Summarization of Videos
- URL: http://arxiv.org/abs/2406.16301v1
- Date: Mon, 24 Jun 2024 03:55:25 GMT
- Title: UBiSS: A Unified Framework for Bimodal Semantic Summarization of Videos
- Authors: Yuting Mei, Linli Yao, Qin Jin,
- Abstract summary: We focus on a more comprehensive video summarization task named Bimodal Semantic Summarization of Videos (BiSSV)
We propose a Unified framework UBiSS for the BiSSV task, which models the saliency information in the video and generates a TM-summary and VM-summary simultaneously.
Experiments show that our unified framework achieves better performance than multi-stage summarization pipelines.
- Score: 52.161513027831646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the surge in the amount of video data, video summarization techniques, including visual-modal(VM) and textual-modal(TM) summarization, are attracting more and more attention. However, unimodal summarization inevitably loses the rich semantics of the video. In this paper, we focus on a more comprehensive video summarization task named Bimodal Semantic Summarization of Videos (BiSSV). Specifically, we first construct a large-scale dataset, BIDS, in (video, VM-Summary, TM-Summary) triplet format. Unlike traditional processing methods, our construction procedure contains a VM-Summary extraction algorithm aiming to preserve the most salient content within long videos. Based on BIDS, we propose a Unified framework UBiSS for the BiSSV task, which models the saliency information in the video and generates a TM-summary and VM-summary simultaneously. We further optimize our model with a list-wise ranking-based objective to improve its capacity to capture highlights. Lastly, we propose a metric, $NDCG_{MS}$, to provide a joint evaluation of the bimodal summary. Experiments show that our unified framework achieves better performance than multi-stage summarization pipelines. Code and data are available at https://github.com/MeiYutingg/UBiSS.
Related papers
- V2Xum-LLM: Cross-Modal Video Summarization with Temporal Prompt Instruction Tuning [76.26890864487933]
Video summarization aims to create short, accurate, and cohesive summaries of longer videos.
Most existing datasets are created for video-to-video summarization.
Recent efforts have been made to expand from unimodal to multimodal video summarization.
arXiv Detail & Related papers (2024-04-18T17:32:46Z) - Scaling Up Video Summarization Pretraining with Large Language Models [73.74662411006426]
We introduce an automated and scalable pipeline for generating a large-scale video summarization dataset.
We analyze the limitations of existing approaches and propose a new video summarization model that effectively addresses them.
Our work also presents a new benchmark dataset that contains 1200 long videos each with high-quality summaries annotated by professionals.
arXiv Detail & Related papers (2024-04-04T11:59:06Z) - Learning Summary-Worthy Visual Representation for Abstractive
Summarization in Video [34.202514532882]
We propose a novel approach to learning the summary-worthy visual representation that facilitates abstractive summarization.
Our method exploits the summary-worthy information from both the cross-modal transcript data and the knowledge that distills from the pseudo summary.
arXiv Detail & Related papers (2023-05-08T16:24:46Z) - VideoXum: Cross-modal Visual and Textural Summarization of Videos [54.0985975755278]
We propose a new joint video and text summarization task.
The goal is to generate both a shortened video clip along with the corresponding textual summary from a long video.
The generated shortened video clip and text narratives should be semantically well aligned.
arXiv Detail & Related papers (2023-03-21T17:51:23Z) - TLDW: Extreme Multimodal Summarisation of News Videos [76.50305095899958]
We introduce eXtreme Multimodal Summarisation with Multimodal Output (XMSMO) for the scenario of TL;DW - Too Long; Didn't Watch, akin to TL;DR.
XMSMO aims to summarise a video-document pair into a summary with an extremely short length, which consists of one cover frame as the visual summary and one sentence as the textual summary.
Our method is trained, without using reference summaries, by optimising the visual and textual coverage from the perspectives of the distance between the semantic distributions under optimal transport plans.
arXiv Detail & Related papers (2022-10-16T08:19:59Z) - MHSCNet: A Multimodal Hierarchical Shot-aware Convolutional Network for
Video Summarization [61.69587867308656]
We propose a multimodal hierarchical shot-aware convolutional network, denoted as MHSCNet, to enhance the frame-wise representation.
Based on the learned shot-aware representations, MHSCNet can predict the frame-level importance score in the local and global view of the video.
arXiv Detail & Related papers (2022-04-18T14:53:33Z) - Video Summarization Based on Video-text Modelling [0.0]
We propose a multimodal self-supervised learning framework to obtain semantic representations of videos.
We also introduce a progressive video summarization method, where the important content in a video is pinpointed progressively to generate better summaries.
An objective evaluation framework is proposed to measure the quality of video summaries based on video classification.
arXiv Detail & Related papers (2022-01-07T15:21:46Z) - See, Hear, Read: Leveraging Multimodality with Guided Attention for
Abstractive Text Summarization [14.881597737762316]
We introduce the first large-scale dataset for abstractive text summarization with videos of diverse duration, compiled from presentations in well-known academic conferences like NDSS, ICML, NeurIPS, etc.
We then propose name, a factorized multi-modal Transformer based decoder-only language model, which inherently captures the intra-modal and inter-modal dynamics within various input modalities for the text summarization task.
arXiv Detail & Related papers (2021-05-20T08:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.