KEHRL: Learning Knowledge-Enhanced Language Representations with Hierarchical Reinforcement Learning
- URL: http://arxiv.org/abs/2406.16374v1
- Date: Mon, 24 Jun 2024 07:32:35 GMT
- Title: KEHRL: Learning Knowledge-Enhanced Language Representations with Hierarchical Reinforcement Learning
- Authors: Dongyang Li, Taolin Zhang, Longtao Huang, Chengyu Wang, Xiaofeng He, Hui Xue,
- Abstract summary: Knowledge-enhanced pre-trained language models (KEPLMs) leverage relation triples from knowledge graphs (KGs)
Previous works treat knowledge enhancement as two independent operations, i.e., knowledge injection and knowledge integration.
This paper jointly addresses the problems of detecting positions for knowledge injection and integrating external knowledge into the model in order to avoid injecting inaccurate or irrelevant knowledge.
- Score: 32.086825891769585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge-enhanced pre-trained language models (KEPLMs) leverage relation triples from knowledge graphs (KGs) and integrate these external data sources into language models via self-supervised learning. Previous works treat knowledge enhancement as two independent operations, i.e., knowledge injection and knowledge integration. In this paper, we propose to learn Knowledge-Enhanced language representations with Hierarchical Reinforcement Learning (KEHRL), which jointly addresses the problems of detecting positions for knowledge injection and integrating external knowledge into the model in order to avoid injecting inaccurate or irrelevant knowledge. Specifically, a high-level reinforcement learning (RL) agent utilizes both internal and prior knowledge to iteratively detect essential positions in texts for knowledge injection, which filters out less meaningful entities to avoid diverting the knowledge learning direction. Once the entity positions are selected, a relevant triple filtration module is triggered to perform low-level RL to dynamically refine the triples associated with polysemic entities through binary-valued actions. Experiments validate KEHRL's effectiveness in probing factual knowledge and enhancing the model's performance on various natural language understanding tasks.
Related papers
- Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - TRELM: Towards Robust and Efficient Pre-training for Knowledge-Enhanced Language Models [31.209774088374374]
This paper introduces TRELM, a Robust and Efficient Pre-training framework for Knowledge-Enhanced Language Models.
We employ a robust approach to inject knowledge triples and employ a knowledge-augmented memory bank to capture valuable information.
We show that TRELM reduces pre-training time by at least 50% and outperforms other KEPLMs in knowledge probing tasks and multiple knowledge-aware language understanding tasks.
arXiv Detail & Related papers (2024-03-17T13:04:35Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks.
However, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge.
We introduce CONNER, designed to evaluate generated knowledge from six important perspectives.
arXiv Detail & Related papers (2023-10-11T08:22:37Z) - Commonsense Knowledge Transfer for Pre-trained Language Models [83.01121484432801]
We introduce commonsense knowledge transfer, a framework to transfer the commonsense knowledge stored in a neural commonsense knowledge model to a general-purpose pre-trained language model.
It first exploits general texts to form queries for extracting commonsense knowledge from the neural commonsense knowledge model.
It then refines the language model with two self-supervised objectives: commonsense mask infilling and commonsense relation prediction.
arXiv Detail & Related papers (2023-06-04T15:44:51Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
We propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize related latent knowledge without retrieving it from the external corpus.
We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3.
arXiv Detail & Related papers (2023-05-15T15:47:09Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
We propose a UNified knowledge inTERface, UNTER, to provide a unified perspective to exploit both structured knowledge and unstructured knowledge.
With both forms of knowledge injected, UNTER gains continuous improvements on a series of knowledge-driven NLP tasks.
arXiv Detail & Related papers (2023-05-02T17:33:28Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
We argue that storing large amounts of knowledge in the model parameters is sub-optimal given the ever-growing amounts of knowledge and resource requirements.
We present LM-CORE -- a general framework to achieve this -- that allows textitdecoupling of the language model training from the external knowledge source.
Experimental results show that LM-CORE, having access to external knowledge, achieves significant and robust outperformance over state-of-the-art knowledge-enhanced language models on knowledge probing tasks.
arXiv Detail & Related papers (2022-08-12T18:59:37Z) - DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for
Natural Language Understanding [19.478288026844893]
Knowledge-Enhanced Pre-trained Language Models (KEPLMs) are pre-trained models with relation triples injecting from knowledge graphs to improve language understanding abilities.
Previous studies integrate models with knowledge encoders for representing knowledge retrieved from knowledge graphs.
We propose a novel KEPLM named DKPLM that Decomposes Knowledge injection process of the Pre-trained Language Models in pre-training, fine-tuning and inference stages.
arXiv Detail & Related papers (2021-12-02T08:19:42Z) - Towards a Universal Continuous Knowledge Base [49.95342223987143]
We propose a method for building a continuous knowledge base that can store knowledge imported from multiple neural networks.
Experiments on text classification show promising results.
We import the knowledge from multiple models to the knowledge base, from which the fused knowledge is exported back to a single model.
arXiv Detail & Related papers (2020-12-25T12:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.