Theory on Mixture-of-Experts in Continual Learning
- URL: http://arxiv.org/abs/2406.16437v1
- Date: Mon, 24 Jun 2024 08:29:58 GMT
- Title: Theory on Mixture-of-Experts in Continual Learning
- Authors: Hongbo Li, Sen Lin, Lingjie Duan, Yingbin Liang, Ness B. Shroff,
- Abstract summary: Continual learning (CL) has garnered significant attention because of its ability to adapt to new tasks that arrive over time.
Catastrophic forgetting (of old tasks) has been identified as a major issue in CL, as the model adapts to new tasks.
MoE model has recently been shown to effectively mitigate catastrophic forgetting in CL, by employing a gating network.
- Score: 72.42497633220547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning (CL) has garnered significant attention because of its ability to adapt to new tasks that arrive over time. Catastrophic forgetting (of old tasks) has been identified as a major issue in CL, as the model adapts to new tasks. The Mixture-of-Experts (MoE) model has recently been shown to effectively mitigate catastrophic forgetting in CL, by employing a gating network to sparsify and distribute diverse tasks among multiple experts. However, there is a lack of theoretical analysis of MoE and its impact on the learning performance in CL. This paper provides the first theoretical results to characterize the impact of MoE in CL via the lens of overparameterized linear regression tasks. We establish the benefit of MoE over a single expert by proving that the MoE model can diversify its experts to specialize in different tasks, while its router learns to select the right expert for each task and balance the loads across all experts. Our study further suggests an intriguing fact that the MoE in CL needs to terminate the update of the gating network after sufficient training rounds to attain system convergence, which is not needed in the existing MoE studies that do not consider the continual task arrival. Furthermore, we provide explicit expressions for the expected forgetting and overall generalization error to characterize the benefit of MoE in the learning performance in CL. Interestingly, adding more experts requires additional rounds before convergence, which may not enhance the learning performance. Finally, we conduct experiments on both synthetic and real datasets to extend these insights from linear models to deep neural networks (DNNs), which also shed light on the practical algorithm design for MoE in CL.
Related papers
- ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models [103.45785408116146]
Continual learning (CL) aims to train a model that can solve multiple tasks presented sequentially.
Recent CL approaches have achieved strong performance by leveraging large pre-trained models that generalize well to downstream tasks.
However, such methods lack theoretical guarantees, making them prone to unexpected failures.
We bridge this gap by integrating an empirically strong approach into a principled framework, designed to prevent forgetting.
arXiv Detail & Related papers (2024-10-01T12:58:37Z) - Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning [37.745896674964186]
Multi-task learning (MTL) aims to improve the generalization performance of a model on multiple related tasks by training it simultaneously on those tasks.
Continual learning (CL) involves adapting to new sequentially arriving tasks over time without forgetting the previously acquired knowledge.
We develop theoretical results describing the effect of various system parameters on the model's performance in an MTL setup.
Our results reveal the impact of buffer size and model capacity on the forgetting rate in a CL setup and help shed light on some of the state-of-the-art CL methods.
arXiv Detail & Related papers (2024-08-29T23:22:40Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtend is an effective framework designed to streamline the modality adaptation and extension of Mixture-of-Experts (MoE) models.
MoExtend seamlessly integrates new experts into pre-trained MoE models, endowing them with novel knowledge without the need to tune pretrained models.
arXiv Detail & Related papers (2024-08-07T02:28:37Z) - Mixture of Experts in a Mixture of RL settings [15.124698782503248]
We show that MoEs can boost Deep Reinforcement Learning (DRL) performance by expanding the network's parameter count while reducing dormant neurons.
We shed more light on MoEs' ability to deal with non-stationarity and investigate MoEs in DRL settings with "amplified" non-stationarity via multi-task training.
arXiv Detail & Related papers (2024-06-26T15:15:15Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
We introduce SEER-MoE, a framework for reducing both the memory footprint and compute requirements of pre-trained MoE models.
The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss.
Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.
arXiv Detail & Related papers (2024-04-07T22:13:43Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
This paper extensively studies the impact of Continual Learning (CL) models as pre-trainers.
We find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance.
We propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks.
arXiv Detail & Related papers (2023-06-21T05:26:28Z) - Theory on Forgetting and Generalization of Continual Learning [41.85538120246877]
Continual learning (CL) aims to learn a sequence of tasks.
There is a lack of understanding on what factors are important and how they affect "catastrophic forgetting" and generalization performance.
We show that our results not only explain some interesting empirical observations in recent studies, but also motivate better practical algorithm designs of CL.
arXiv Detail & Related papers (2023-02-12T02:14:14Z) - Learning an evolved mixture model for task-free continual learning [11.540150938141034]
We address the Task-Free Continual Learning (TFCL) in which a model is trained on non-stationary data streams with no explicit task information.
We introduce two simple dropout mechanisms to selectively remove stored examples in order to avoid memory overload.
arXiv Detail & Related papers (2022-07-11T16:01:27Z) - A Comprehensive Empirical Study of Vision-Language Pre-trained Model for
Supervised Cross-Modal Retrieval [19.2650103482509]
Cross-Modal Retrieval (CMR) is an important research topic across multimodal computing and information retrieval.
We take CLIP as the current representative vision-language pre-trained model to conduct a comprehensive empirical study.
We propose a novel model CLIP4CMR that employs pre-trained CLIP as backbone network to perform supervised CMR.
arXiv Detail & Related papers (2022-01-08T06:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.