Phase diagram of non-Hermitian BCS superfluids in a dissipative asymmetric Hubbard model
- URL: http://arxiv.org/abs/2406.16482v1
- Date: Mon, 24 Jun 2024 09:37:04 GMT
- Title: Phase diagram of non-Hermitian BCS superfluids in a dissipative asymmetric Hubbard model
- Authors: Soma Takemori, Kazuki Yamamoto, Akihisa Koga,
- Abstract summary: We investigate the non-Hermitian (NH) attractive Fermi-Hubbard model with asymmetric hopping and complex-valued interactions.
We find that the weak asymmetry of the hopping does not affect the BCS superfluidity since it only affects the imaginary part of the eigenvalues of the BdG Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the non-Hermitian (NH) attractive Fermi-Hubbard model with asymmetric hopping and complex-valued interactions, which should be realized by collective one-body loss and two-body loss. By means of the NH BCS theory, we find that the weak asymmetry of the hopping does not affect the BCS superfluidity since it only affects the imaginary part of the eigenvalues of the BdG Hamiltonian. Systematic analysis in the $d$-dimensional hypercubic lattices clarifies that the singularity in the density of states affects the phase boundary between the normal and dissipation-induced superfluid states. Our results can be tested in ultracold atoms by using the photoassociation techniques and a nonlocal Rabi coupling with local losses and postselecting null measurement outcomes utilized by quantum-gas microscopes.
Related papers
- Theory of non-Hermitian fermionic superfluidity on a honeycomb lattice:
Interplay between exceptional manifolds and van Hove Singularity [0.0]
We study the non-Hermitian fermionic superfluidity subject to dissipation of Cooper pairs on a honeycomb lattice.
We demonstrate the emergence of the dissipation-induced superfluid phase that is anomalously enlarged by a cusp on the phase boundary.
arXiv Detail & Related papers (2023-09-28T06:21:55Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Gain/loss effects on spin-orbit coupled ultracold atoms in
two-dimensional optical lattices [0.5249805590164902]
We investigate the corresponding non-Hermitian tight-binding model and evaluate the gain/loss effects on various properties of the system.
We find that the conventional bulk-boundary correspondence does not break down with only on-site gain/loss due to the lack of non-Hermitian skin effect.
Given the technical accessibility of state-dependent atom loss, this model could be realized in current cold-atom experiments.
arXiv Detail & Related papers (2022-01-04T16:00:30Z) - Universal properties of dissipative Tomonaga-Luttinger liquids: Case
study of a non-Hermitian XXZ spin chain [3.4253416336476246]
We demonstrate the universal properties of dissipative Tomonaga-Luttinger (TL) liquids by calculating correlation functions and performing finite-size scaling analysis.
Our results can be tested with the two-component Bose-Hubbard system of ultracold atoms subject to two-body loss.
arXiv Detail & Related papers (2021-12-23T11:16:31Z) - Decoherence effects in quantum nondemolition measurement induced
entanglement between Bose-Einstein condensates [3.6827848089389486]
We study the robustness of quantum nondemolition (QND) measurement-induced entanglement between Bose-Einstein Condensates (BECs)
We analyze the two dominant channels of decoherence, atomic dephasing and photon loss on the entangled states produced by this scheme.
arXiv Detail & Related papers (2021-10-18T02:53:14Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Ramsey interferometry of non-Hermitian quantum impurities [0.0]
We propose a protocol to measure via interferometry a generalised Loschmidt echo of a generic state evolving in time with the non-Hermitian Hamiltonian itself.
For strong dissipation we uncover the phenomenology of a quantum many-body Zeno effect.
arXiv Detail & Related papers (2020-03-16T18:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.