Star+: A New Multi-Domain Model for CTR Prediction
- URL: http://arxiv.org/abs/2406.16568v1
- Date: Mon, 24 Jun 2024 12:03:35 GMT
- Title: Star+: A New Multi-Domain Model for CTR Prediction
- Authors: Çağrı Yeşil, Kaya Turgut,
- Abstract summary: We introduce Star+, a novel multi-domain model for click-through rate (CTR) prediction inspired by the Star model.
Our experiments on both industrial and public datasets demonstrate that Star+ significantly improves prediction accuracy and efficiency.
- Score: 0.0
- License:
- Abstract: In this paper, we introduce Star+, a novel multi-domain model for click-through rate (CTR) prediction inspired by the Star model. Traditional single-domain approaches and existing multi-task learning techniques face challenges in multi-domain environments due to their inability to capture domain-specific data distributions and complex inter-domain relationships. Star+ addresses these limitations by enhancing the interaction between shared and domain-specific information through various fusion strategies, such as add, adaptive add, concatenation, and gating fusions, to find the optimal balance between domain-specific and shared information. We also investigate the impact of different normalization techniques, including layer normalization, batch normalization, and partition normalization, on the performance of our model. Our extensive experiments on both industrial and public datasets demonstrate that Star+ significantly improves prediction accuracy and efficiency. This work contributes to the advancement of recommendation systems by providing a robust, scalable, and adaptive solution for multi-domain environments.
Related papers
- Adaptive Coordinators and Prompts on Heterogeneous Graphs for Cross-Domain Recommendations [31.05975545409408]
We develop HAGO, a framework to integrate multi-domain graphs into a cohesive structure.
We also develop a universal multi-domain graph pre-training strategy.
Our solutions outperform state-of-the-art methods in multi-domain recommendation scenarios.
arXiv Detail & Related papers (2024-10-15T15:50:53Z) - Investigating the potential of Sparse Mixtures-of-Experts for multi-domain neural machine translation [59.41178047749177]
We focus on multi-domain Neural Machine Translation, with the goal of developing efficient models which can handle data from various domains seen during training and are robust to domains unseen during training.
We hypothesize that Sparse Mixture-of-Experts (SMoE) models are a good fit for this task, as they enable efficient model scaling.
We conduct a series of experiments aimed at validating the utility of SMoE for the multi-domain scenario, and find that a straightforward width scaling of Transformer is a simpler and surprisingly more efficient approach in practice, and reaches the same performance level as SMoE.
arXiv Detail & Related papers (2024-07-01T09:45:22Z) - Improving Intrusion Detection with Domain-Invariant Representation Learning in Latent Space [4.871119861180455]
We introduce a two-phase representation learning technique using multi-task learning.
We disentangle the latent space by minimizing the mutual information between the prior and latent space.
We assess the model's efficacy across multiple cybersecurity datasets.
arXiv Detail & Related papers (2023-12-28T17:24:13Z) - Mixed Attention Network for Cross-domain Sequential Recommendation [63.983590953727386]
We propose a Mixed Attention Network (MAN) with local and global attention modules to extract the domain-specific and cross-domain information.
Experimental results on two real-world datasets demonstrate the superiority of our proposed model.
arXiv Detail & Related papers (2023-11-14T16:07:16Z) - AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR
Prediction [4.299153274884263]
We propose an elegant and flexible multi-distribution modeling paradigm, named Adaptive Distribution Hierarchical Model (AdaptDHM)
Our model achieves impressive prediction accuracy and its time cost during the training stage is more than 50% less than that of other models.
arXiv Detail & Related papers (2022-11-22T09:10:37Z) - Variational Attention: Propagating Domain-Specific Knowledge for
Multi-Domain Learning in Crowd Counting [75.80116276369694]
In crowd counting, due to the problem of laborious labelling, it is perceived intractability of collecting a new large-scale dataset.
We resort to the multi-domain joint learning and propose a simple but effective Domain-specific Knowledge Propagating Network (DKPNet)
It is mainly achieved by proposing the novel Variational Attention(VA) technique for explicitly modeling the attention distributions for different domains.
arXiv Detail & Related papers (2021-08-18T08:06:37Z) - Dual Attentive Sequential Learning for Cross-Domain Click-Through Rate
Prediction [76.98616102965023]
Cross domain recommender system constitutes a powerful method to tackle the cold-start and sparsity problem.
We propose a novel approach to cross-domain sequential recommendations based on the dual learning mechanism.
arXiv Detail & Related papers (2021-06-05T01:21:21Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.