OmAgent: A Multi-modal Agent Framework for Complex Video Understanding with Task Divide-and-Conquer
- URL: http://arxiv.org/abs/2406.16620v3
- Date: Tue, 12 Nov 2024 10:02:12 GMT
- Title: OmAgent: A Multi-modal Agent Framework for Complex Video Understanding with Task Divide-and-Conquer
- Authors: Lu Zhang, Tiancheng Zhao, Heting Ying, Yibo Ma, Kyusong Lee,
- Abstract summary: processing extensive videos presents significant challenges due to the vast data and processing demands.
We develop OmAgent, efficiently stores and retrieves relevant video frames for specific queries.
It features an Divide-and-Conquer Loop capable of autonomous reasoning.
We have endowed it with greater autonomy and a robust tool-calling system, enabling it to accomplish even more intricate tasks.
- Score: 14.503628667535425
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have expanded their capabilities to multimodal contexts, including comprehensive video understanding. However, processing extensive videos such as 24-hour CCTV footage or full-length films presents significant challenges due to the vast data and processing demands. Traditional methods, like extracting key frames or converting frames to text, often result in substantial information loss. To address these shortcomings, we develop OmAgent, efficiently stores and retrieves relevant video frames for specific queries, preserving the detailed content of videos. Additionally, it features an Divide-and-Conquer Loop capable of autonomous reasoning, dynamically invoking APIs and tools to enhance query processing and accuracy. This approach ensures robust video understanding, significantly reducing information loss. Experimental results affirm OmAgent's efficacy in handling various types of videos and complex tasks. Moreover, we have endowed it with greater autonomy and a robust tool-calling system, enabling it to accomplish even more intricate tasks.
Related papers
- VideoRAG: Retrieval-Augmented Generation over Video Corpus [57.68536380621672]
VideoRAG is a novel framework that dynamically retrieves relevant videos based on their relevance with queries.
We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
arXiv Detail & Related papers (2025-01-10T11:17:15Z) - VCA: Video Curious Agent for Long Video Understanding [44.19323180593379]
We introduce a curiosity-driven video agent with self-exploration capability, dubbed as VCA.
Built upon VLMs, VCA autonomously navigates video segments and efficiently builds a comprehensive understanding of complex video sequences.
arXiv Detail & Related papers (2024-12-12T23:39:54Z) - Towards Long Video Understanding via Fine-detailed Video Story Generation [58.31050916006673]
Long video understanding has become a critical task in computer vision, driving advancements across numerous applications from surveillance to content retrieval.
Existing video understanding methods suffer from two challenges when dealing with long video understanding: intricate long-context relationship modeling and interference from redundancy.
We introduce Fine-Detailed Video Story generation (FDVS), which interprets long videos into detailed textual representations.
arXiv Detail & Related papers (2024-12-09T03:41:28Z) - SEAL: Semantic Attention Learning for Long Video Representation [31.994155533019843]
This paper introduces SEmantic Attention Learning (SEAL), a novel unified representation for long videos.
To reduce computational complexity, long videos are decomposed into three distinct types of semantic entities.
Our representation is versatile, enabling applications across various long video understanding tasks.
arXiv Detail & Related papers (2024-12-02T18:46:12Z) - SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis [52.050036778325094]
We introduce SALOVA: Segment-Augmented Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content.
We present a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich context.
Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries.
arXiv Detail & Related papers (2024-11-25T08:04:47Z) - VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
We introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence.
Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o.
We propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM.
arXiv Detail & Related papers (2024-11-22T08:33:36Z) - Reframe Anything: LLM Agent for Open World Video Reframing [0.8424099022563256]
We introduce Reframe Any Video Agent (RAVA), an AI-based agent that restructures visual content for video reframing.
RAVA operates in three stages: perception, where it interprets user instructions and video content; planning, where it determines aspect ratios and reframing strategies; and execution, where it invokes the editing tools to produce the final video.
Our experiments validate the effectiveness of RAVA in video salient object detection and real-world reframing tasks, demonstrating its potential as a tool for AI-powered video editing.
arXiv Detail & Related papers (2024-03-10T03:29:56Z) - Spatio-temporal Prompting Network for Robust Video Feature Extraction [74.54597668310707]
Frametemporal is one of the main challenges in the field of video understanding.
Recent approaches exploit transformer-based integration modules to obtain quality-of-temporal information.
We present a neat and unified framework called N-Temporal Prompting Network (NNSTP)
It can efficiently extract video features by adjusting the input features in the network backbone.
arXiv Detail & Related papers (2024-02-04T17:52:04Z) - MVBench: A Comprehensive Multi-modal Video Understanding Benchmark [63.14000659130736]
We introduce a comprehensive Multi-modal Video understanding Benchmark, namely MVBench.
We first introduce a novel static-to-dynamic method to define these temporal-related tasks.
Then, guided by the task definition, we automatically convert public video annotations into multiple-choice QA to evaluate each task.
arXiv Detail & Related papers (2023-11-28T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.