Vision-Language Consistency Guided Multi-modal Prompt Learning for Blind AI Generated Image Quality Assessment
- URL: http://arxiv.org/abs/2406.16641v1
- Date: Mon, 24 Jun 2024 13:45:31 GMT
- Title: Vision-Language Consistency Guided Multi-modal Prompt Learning for Blind AI Generated Image Quality Assessment
- Authors: Jun Fu, Wei Zhou, Qiuping Jiang, Hantao Liu, Guangtao Zhai,
- Abstract summary: We propose vision-language consistency guided multi-modal prompt learning for blind image quality assessment (AGIQA)
Specifically, we introduce learnable textual and visual prompts in language and vision branches of Contrastive Language-Image Pre-training (CLIP) models.
We design a text-to-image alignment quality prediction task, whose learned vision-language consistency knowledge is used to guide the optimization of the above multi-modal prompts.
- Score: 57.07360640784803
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, textual prompt tuning has shown inspirational performance in adapting Contrastive Language-Image Pre-training (CLIP) models to natural image quality assessment. However, such uni-modal prompt learning method only tunes the language branch of CLIP models. This is not enough for adapting CLIP models to AI generated image quality assessment (AGIQA) since AGIs visually differ from natural images. In addition, the consistency between AGIs and user input text prompts, which correlates with the perceptual quality of AGIs, is not investigated to guide AGIQA. In this letter, we propose vision-language consistency guided multi-modal prompt learning for blind AGIQA, dubbed CLIP-AGIQA. Specifically, we introduce learnable textual and visual prompts in language and vision branches of CLIP models, respectively. Moreover, we design a text-to-image alignment quality prediction task, whose learned vision-language consistency knowledge is used to guide the optimization of the above multi-modal prompts. Experimental results on two public AGIQA datasets demonstrate that the proposed method outperforms state-of-the-art quality assessment models. The source code is available at https://github.com/JunFu1995/CLIP-AGIQA.
Related papers
- Vision Language Modeling of Content, Distortion and Appearance for Image Quality Assessment [20.851102845794244]
Distilling high level knowledge about quality bearing attributes is crucial for developing objective Image Quality Assessment (IQA)
We present a new blind IQA (BIQA) model termed Self-supervision and Vision-Language supervision Image QUality Evaluator (SLIQUE)
SLIQUE features a joint vision-language and visual contrastive representation learning framework for acquiring high level knowledge about the images semantic contents, distortion characteristics and appearance properties for IQA.
arXiv Detail & Related papers (2024-06-14T09:18:28Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - FINEMATCH: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction [66.98008357232428]
We propose FineMatch, a new aspect-based fine-grained text and image matching benchmark.
FineMatch focuses on text and image mismatch detection and correction.
We show that models trained on FineMatch demonstrate enhanced proficiency in detecting fine-grained text and image mismatches.
arXiv Detail & Related papers (2024-04-23T03:42:14Z) - IQAGPT: Image Quality Assessment with Vision-language and ChatGPT Models [23.99102775778499]
This paper introduces IQAGPT, an innovative image quality assessment system integrating an image quality captioning VLM with ChatGPT.
We build a CT-IQA dataset for training and evaluation, comprising 1,000 CT slices with diverse quality levels professionally annotated.
To better leverage the capabilities of LLMs, we convert annotated quality scores into semantically rich text descriptions using a prompt template.
arXiv Detail & Related papers (2023-12-25T09:13:18Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
We propose a new framework, named Semantic-guided Visual Adapting (SgVA), to extend vision-language pre-trained models.
SgVA produces discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation.
State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
arXiv Detail & Related papers (2022-11-28T14:58:15Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
We introduce Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner.
Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments.
arXiv Detail & Related papers (2022-07-25T17:58:16Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) has been developed to learn image descriptions from unaligned vision-language sample pairs.
Recent successes of Vision-Language Pre-Trained Models (VL-PTMs) have triggered the development of prompt-based learning.
We present in this paper a novel scheme based on prompt to train the UIC model, making best use of the powerful generalization ability.
arXiv Detail & Related papers (2022-05-26T03:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.