Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
- URL: http://arxiv.org/abs/2406.16678v2
- Date: Wed, 02 Oct 2024 19:04:17 GMT
- Title: Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
- Authors: Markus Frohmann, Igor Sterner, Ivan Vulić, Benjamin Minixhofer, Markus Schedl,
- Abstract summary: We introduce a new model - Segment any Text (SaT) - to solve this problem.
To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation.
To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains.
- Score: 9.703886326323644
- License:
- Abstract: Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://github.com/segment-any-text/wtpsplit under the MIT license.
Related papers
- Scalable and Domain-General Abstractive Proposition Segmentation [20.532804009152255]
We focus on the task of abstractive proposition segmentation (APS): transforming text into simple, self-contained, well-formed sentences.
We first introduce evaluation metrics for the task to measure several dimensions of quality.
We then propose a scalable, yet accurate, proposition segmentation model.
arXiv Detail & Related papers (2024-06-28T10:24:31Z) - From Text Segmentation to Smart Chaptering: A Novel Benchmark for
Structuring Video Transcriptions [63.11097464396147]
We introduce a novel benchmark YTSeg focusing on spoken content that is inherently more unstructured and both topically and structurally diverse.
We also introduce an efficient hierarchical segmentation model MiniSeg, that outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-27T15:59:37Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
We propose TextFormer, a query-based end-to-end text spotter with Transformer architecture.
TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling.
It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing.
arXiv Detail & Related papers (2023-06-06T03:37:41Z) - Where's the Point? Self-Supervised Multilingual Punctuation-Agnostic
Sentence Segmentation [65.6736056006381]
We present a multilingual punctuation-agnostic sentence segmentation method covering 85 languages.
Our method outperforms all the prior best sentence-segmentation tools by an average of 6.1% F1 points.
By using our method to match sentence segmentation to the segmentation used during training of MT models, we achieve an average improvement of 2.3 BLEU points.
arXiv Detail & Related papers (2023-05-30T09:49:42Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
We investigate three categories of text augmentation methodologies which perform changes on the syntax.
We compare them on part-of-speech tagging, dependency parsing and semantic role labeling for a diverse set of language families.
Our results suggest that the augmentation techniques can further improve over strong baselines based on mBERT.
arXiv Detail & Related papers (2021-11-18T10:52:48Z) - Pre-training Language Model Incorporating Domain-specific Heterogeneous Knowledge into A Unified Representation [49.89831914386982]
We propose a unified pre-trained language model (PLM) for all forms of text, including unstructured text, semi-structured text, and well-structured text.
Our approach outperforms the pre-training of plain text using only 1/4 of the data.
arXiv Detail & Related papers (2021-09-02T16:05:24Z) - Topical Change Detection in Documents via Embeddings of Long Sequences [4.13878392637062]
We formulate the task of text segmentation as an independent supervised prediction task.
By fine-tuning on paragraphs of similar sections, we are able to show that learned features encode topic information.
Unlike previous approaches, which mostly operate on sentence-level, we consistently use a broader context.
arXiv Detail & Related papers (2020-12-07T12:09:37Z) - Enabling Language Models to Fill in the Blanks [81.59381915581892]
We present a simple approach for text infilling, the task of predicting missing spans of text at any position in a document.
We train (or fine-tune) off-the-shelf language models on sequences containing the concatenation of artificially-masked text and the text which was masked.
We show that this approach, which we call infilling by language modeling, can enable LMs to infill entire sentences effectively on three different domains: short stories, scientific abstracts, and lyrics.
arXiv Detail & Related papers (2020-05-11T18:00:03Z) - Text Perceptron: Towards End-to-End Arbitrary-Shaped Text Spotting [49.768327669098674]
We propose an end-to-end trainable text spotting approach named Text Perceptron.
It first employs an efficient segmentation-based text detector that learns the latent text reading order and boundary information.
Then a novel Shape Transform Module (abbr. STM) is designed to transform the detected feature regions into regular morphologies.
arXiv Detail & Related papers (2020-02-17T08:07:19Z) - Two-Level Transformer and Auxiliary Coherence Modeling for Improved Text
Segmentation [9.416757363901295]
We introduce a novel supervised model for text segmentation with simple but explicit coherence modeling.
Our model -- a neural architecture consisting of two hierarchically connected Transformer networks -- is a multi-task learning model that couples the sentence-level segmentation objective with the coherence objective that differentiates correct sequences of sentences from corrupt ones.
arXiv Detail & Related papers (2020-01-03T17:06:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.