Maximum Likelihood Estimation of the Direction of Sound In A Reverberant Noisy Environment
- URL: http://arxiv.org/abs/2406.17103v2
- Date: Mon, 15 Jul 2024 03:22:05 GMT
- Title: Maximum Likelihood Estimation of the Direction of Sound In A Reverberant Noisy Environment
- Authors: Mohamed F. Mansour,
- Abstract summary: We describe a new method for estimating the direction of sound in a reverberant environment from basic principles of sound propagation.
The method utilizes SNR-adaptive features from time-delay and energy of the directional components after acoustic wave decomposition.
- Score: 0.8702432681310399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a new method for estimating the direction of sound in a reverberant environment from basic principles of sound propagation. The method utilizes SNR-adaptive features from time-delay and energy of the directional components after acoustic wave decomposition of the observed sound field to estimate the line-of-sight direction under noisy and reverberant conditions. The effectiveness of the approach is established with measured data of different microphone array configurations under various usage scenarios.
Related papers
- Towards Robust Transcription: Exploring Noise Injection Strategies for Training Data Augmentation [55.752737615873464]
This study investigates the impact of white noise at various Signal-to-Noise Ratio (SNR) levels on state-of-the-art APT models.
We hope this research provides valuable insights as preliminary work toward developing transcription models that maintain consistent performance across a range of acoustic conditions.
arXiv Detail & Related papers (2024-10-18T02:31:36Z) - ActiveRIR: Active Audio-Visual Exploration for Acoustic Environment Modeling [57.1025908604556]
An environment acoustic model represents how sound is transformed by the physical characteristics of an indoor environment.
We propose active acoustic sampling, a new task for efficiently building an environment acoustic model of an unmapped environment.
We introduce ActiveRIR, a reinforcement learning policy that leverages information from audio-visual sensor streams to guide agent navigation and determine optimal acoustic data sampling positions.
arXiv Detail & Related papers (2024-04-24T21:30:01Z) - Sound event localization and classification using WASN in Outdoor Environment [2.234738672139924]
Methods for sound event localization and classification typically rely on a single microphone array.
We propose a deep learning-based method that employs multiple features and attention mechanisms to estimate the location and class of sound source.
arXiv Detail & Related papers (2024-03-29T11:44:14Z) - Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Neural Acoustic Context Field: Rendering Realistic Room Impulse Response
With Neural Fields [61.07542274267568]
This letter proposes a novel Neural Acoustic Context Field approach, called NACF, to parameterize an audio scene.
Driven by the unique properties of RIR, we design a temporal correlation module and multi-scale energy decay criterion.
Experimental results show that NACF outperforms existing field-based methods by a notable margin.
arXiv Detail & Related papers (2023-09-27T19:50:50Z) - Generative adversarial networks with physical sound field priors [6.256923690998173]
This paper presents a deep learning-based approach for learns-temporal reconstruction of sound fields using Generative Adversa Networks (GANs)
The proposed method uses a plane wave basis and the underlying statistical distributions of pressure in rooms to reconstruct sound fields from a limited number of measurements.
The results suggest that this approach provides a promising approach to sound field reconstruction using generative models that allow for a physically informed acoustics prior to problems.
arXiv Detail & Related papers (2023-08-01T10:11:23Z) - Blind Acoustic Room Parameter Estimation Using Phase Features [4.473249957074495]
We propose utilizing novel phase-related features to extend recent approaches to blindly estimate the so-called "reverberation fingerprint" parameters.
The addition of these features is shown to outperform existing methods that rely solely on magnitude-based spectral features.
arXiv Detail & Related papers (2023-03-13T20:05:41Z) - Unsupervised Acoustic Scene Mapping Based on Acoustic Features and
Dimensionality Reduction [18.641610823584433]
We introduce an unsupervised data-driven approach that exploits the natural structure of the data.
Our method builds upon local conformal autoencoders (LOCA) - an offline deep learning scheme for learning standardized data coordinates from measurements.
arXiv Detail & Related papers (2023-01-01T17:46:09Z) - Inference and Denoise: Causal Inference-based Neural Speech Enhancement [83.4641575757706]
This study addresses the speech enhancement (SE) task within the causal inference paradigm by modeling the noise presence as an intervention.
The proposed causal inference-based speech enhancement (CISE) separates clean and noisy frames in an intervened noisy speech using a noise detector and assigns both sets of frames to two mask-based enhancement modules (EMs) to perform noise-conditional SE.
arXiv Detail & Related papers (2022-11-02T15:03:50Z) - Few-Shot Audio-Visual Learning of Environment Acoustics [89.16560042178523]
Room impulse response (RIR) functions capture how the surrounding physical environment transforms the sounds heard by a listener.
We explore how to infer RIRs based on a sparse set of images and echoes observed in the space.
In experiments using a state-of-the-art audio-visual simulator for 3D environments, we demonstrate that our method successfully generates arbitrary RIRs.
arXiv Detail & Related papers (2022-06-08T16:38:24Z) - Joint Robust Voicing Detection and Pitch Estimation Based on Residual
Harmonics [23.523461173865737]
The proposed criterion is used both for pitch estimation, as well as for determining the voicing segments of speech.
The technique is shown to be particularly robust to additive noise, leading to a significant improvement in adverse conditions.
arXiv Detail & Related papers (2019-12-28T13:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.