Generative Expansion of Small Datasets: An Expansive Graph Approach
- URL: http://arxiv.org/abs/2406.17238v2
- Date: Tue, 01 Oct 2024 17:12:57 GMT
- Title: Generative Expansion of Small Datasets: An Expansive Graph Approach
- Authors: Vahid Jebraeeli, Bo Jiang, Hamid Krim, Derya Cansever,
- Abstract summary: We introduce an Expansive Synthesis model generating large-scale, information-rich datasets from minimal samples.
An autoencoder with self-attention layers and optimal transport refines distributional consistency.
Results show comparable performance, demonstrating the model's potential to augment training data effectively.
- Score: 13.053285552524052
- License:
- Abstract: Limited data availability in machine learning significantly impacts performance and generalization. Traditional augmentation methods enhance moderately sufficient datasets. GANs struggle with convergence when generating diverse samples. Diffusion models, while effective, have high computational costs. We introduce an Expansive Synthesis model generating large-scale, information-rich datasets from minimal samples. It uses expander graph mappings and feature interpolation to preserve data distribution and feature relationships. The model leverages neural networks' non-linear latent space, captured by a Koopman operator, to create a linear feature space for dataset expansion. An autoencoder with self-attention layers and optimal transport refines distributional consistency. We validate by comparing classifiers trained on generated data to those trained on original datasets. Results show comparable performance, demonstrating the model's potential to augment training data effectively. This work advances data generation, addressing scarcity in machine learning applications.
Related papers
- zGAN: An Outlier-focused Generative Adversarial Network For Realistic Synthetic Data Generation [0.0]
"Black swans" have posed a challenge to performance of classical machine learning models.
This article provides an overview of the zGAN model architecture developed for the purpose of generating synthetic data with outlier characteristics.
It shows promising results on realistic synthetic data generation, as well as uplift capabilities vis-a-vis model performance.
arXiv Detail & Related papers (2024-10-28T07:55:11Z) - Koopcon: A new approach towards smarter and less complex learning [13.053285552524052]
In the era of big data, the sheer volume and complexity of datasets pose significant challenges in machine learning.
This paper introduces an innovative Autoencoder-based dataset condensation model backed by Koopman operator theory.
Inspired by the predictive coding mechanisms of the human brain, our model leverages a novel approach to encode and reconstruct data.
arXiv Detail & Related papers (2024-05-22T17:47:14Z) - DiverGen: Improving Instance Segmentation by Learning Wider Data Distribution with More Diverse Generative Data [48.31817189858086]
We argue that generative data can expand the data distribution that the model can learn, thus mitigating overfitting.
We find that DiverGen significantly outperforms the strong model X-Paste, achieving +1.1 box AP and +1.1 mask AP across all categories, and +1.9 box AP and +2.5 mask AP for rare categories.
arXiv Detail & Related papers (2024-05-16T15:30:18Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Scalable Modular Synthetic Data Generation for Advancing Aerial Autonomy [2.9005223064604078]
We introduce a scalable Aerial Synthetic Data Augmentation (ASDA) framework tailored to aerial autonomy applications.
ASDA extends a central data collection engine with two scriptable pipelines that automatically perform scene and data augmentations.
We demonstrate the effectiveness of our method in automatically generating diverse datasets.
arXiv Detail & Related papers (2022-11-10T04:37:41Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.