Mamba24/8D: Enhancing Global Interaction in Point Clouds via State Space Model
- URL: http://arxiv.org/abs/2406.17442v1
- Date: Tue, 25 Jun 2024 10:23:53 GMT
- Title: Mamba24/8D: Enhancing Global Interaction in Point Clouds via State Space Model
- Authors: Zhuoyuan Li, Yubo Ai, Jiahao Lu, ChuXin Wang, Jiacheng Deng, Hanzhi Chang, Yanzhe Liang, Wenfei Yang, Shifeng Zhang, Tianzhu Zhang,
- Abstract summary: We introduce Mamba, a SSM-based architecture, to the point cloud domain.
We propose Mamba24/8D, which has strong global modeling capability under linear complexity.
Mamba24/8D obtains state of the art results on several 3D point cloud segmentation tasks.
- Score: 37.375866491592305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have demonstrated impressive results for 3D point cloud semantic segmentation. However, the quadratic complexity of transformer makes computation cost high, limiting the number of points that can be processed simultaneously and impeding the modeling of long-range dependencies. Drawing inspiration from the great potential of recent state space models (SSM) for long sequence modeling, we introduce Mamba, a SSM-based architecture, to the point cloud domain and propose Mamba24/8D, which has strong global modeling capability under linear complexity. Specifically, to make disorderness of point clouds fit in with the causal nature of Mamba, we propose a multi-path serialization strategy applicable to point clouds. Besides, we propose the ConvMamba block to compensate for the shortcomings of Mamba in modeling local geometries and in unidirectional modeling. Mamba24/8D obtains state of the art results on several 3D point cloud segmentation tasks, including ScanNet v2, ScanNet200 and nuScenes, while its effectiveness is validated by extensive experiments.
Related papers
- Serialized Point Mamba: A Serialized Point Cloud Mamba Segmentation Model [9.718016281821471]
Serialized Point Cloud Mamba Model (Serialized Point Mamba) developed.
Inspired by the Mamba model's success in natural language processing, we propose the Serialized Point Cloud Mamba Model.
Method achieved 76.8 mIoU on Scannet and facilitating 70.3 mIoU on S3DIS.
arXiv Detail & Related papers (2024-07-17T05:26:58Z) - Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model [18.30032389736101]
Mamba model, based on state space models (SSM), outperforms Transformer in multiple areas with only linear complexity.
We present Mamba3D, a state space model tailored for point cloud learning to enhance local feature extraction.
arXiv Detail & Related papers (2024-04-23T12:20:27Z) - Point Mamba: A Novel Point Cloud Backbone Based on State Space Model with Octree-Based Ordering Strategy [15.032048930130614]
We propose a novel SSM-based point cloud processing backbone, named Point Mamba, with a causality-aware ordering mechanism.
Our method achieves state-of-the-art performance compared with transformer-based counterparts, with 93.4% accuracy and 75.7 mIOU respectively.
Our method demonstrates the great potential that SSM can serve as a generic backbone in point cloud understanding.
arXiv Detail & Related papers (2024-03-11T07:07:39Z) - The Hidden Attention of Mamba Models [54.50526986788175]
The Mamba layer offers an efficient selective state space model (SSM) that is highly effective in modeling multiple domains.
We show that such models can be viewed as attention-driven models.
This new perspective enables us to empirically and theoretically compare the underlying mechanisms to that of the self-attention layers in transformers.
arXiv Detail & Related papers (2024-03-03T18:58:21Z) - Point Cloud Mamba: Point Cloud Learning via State Space Model [73.7454734756626]
We show that Mamba-based point cloud methods can outperform previous methods based on transformer or multi-layer perceptrons (MLPs)
In particular, we demonstrate that Mamba-based point cloud methods can outperform previous methods based on transformer or multi-layer perceptrons (MLPs)
Point Cloud Mamba surpasses the state-of-the-art (SOTA) point-based method PointNeXt and achieves new SOTA performance on the ScanNN, ModelNet40, ShapeNetPart, and S3DIS datasets.
arXiv Detail & Related papers (2024-03-01T18:59:03Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
We propose PointMamba, transferring the success of Mamba, a recent representative state space model (SSM), from NLP to point cloud analysis tasks.
Unlike traditional Transformers, PointMamba employs a linear complexity algorithm, presenting global modeling capacity while significantly reducing computational costs.
arXiv Detail & Related papers (2024-02-16T14:56:13Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.