Learning to Ask Informative Questions: Enhancing LLMs with Preference Optimization and Expected Information Gain
- URL: http://arxiv.org/abs/2406.17453v3
- Date: Thu, 17 Oct 2024 12:43:21 GMT
- Title: Learning to Ask Informative Questions: Enhancing LLMs with Preference Optimization and Expected Information Gain
- Authors: Davide Mazzaccara, Alberto Testoni, Raffaella Bernardi,
- Abstract summary: Large language models (LLMs) often perform poorly in generating informative questions.
We propose a method to enhance the informativeness of LLM-generated questions in 20-question game dialogues.
- Score: 5.229155918347321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Questions are essential tools for acquiring the necessary information to complete information-seeking tasks. However, large language models (LLMs), especially open-source models, often perform poorly in generating informative questions, as measured by expected information gain (EIG). In this paper, we propose a method to enhance the informativeness of LLM-generated questions in 20-question game dialogues. We sample multiple questions from the same model (LLAMA 2-CHAT 7B) for each game and create pairs of low-EIG and high-EIG questions to apply a Direct Preference Optimization (DPO) algorithm. Our results show that this method produces more effective questions (in terms of EIG), even in domains different from those used to train the DPO model.
Related papers
- Bridging Information Gaps with Comprehensive Answers: Improving the Diversity and Informativeness of Follow-Up Questions [16.46658818885097]
We propose a method that generates diverse and informative questions based on targeting unanswered information.
Our method is applied to augment an existing follow-up questions dataset.
The experimental results demonstrate that language models fine-tuned on the augmented datasets produce follow-up questions of significantly higher quality and diversity.
arXiv Detail & Related papers (2025-02-24T23:14:59Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - GUIDEQ: Framework for Guided Questioning for progressive informational collection and classification [16.66633426354087]
Question Answering (QA) is an important part of tasks like text classification through information gathering.
Our work, GUIDEQ, presents a novel framework for asking guided questions to further progress a partial information.
arXiv Detail & Related papers (2024-11-08T22:03:54Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs)
We propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch.
arXiv Detail & Related papers (2024-11-05T09:27:21Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
We investigate the use of Multi-Embodied LLM Explorers (MELE) for question-answering in an unknown environment.
Multiple LLM-based agents independently explore and then answer queries about a household environment.
We analyze different aggregation methods to generate a single, final answer for each query.
arXiv Detail & Related papers (2024-06-16T12:46:40Z) - CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
We present CLARINET, a system that asks informative clarification questions by choosing questions whose answers would maximize certainty in the correct candidate.
Our approach works by augmenting a large language model (LLM) to condition on a retrieval distribution, finetuning end-to-end to generate the question that would have maximized the rank of the true candidate at each turn.
arXiv Detail & Related papers (2024-04-28T18:21:31Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
Large Language Models (LLMs) generate responses to questions.
Their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions.
To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models.
arXiv Detail & Related papers (2024-01-27T00:18:07Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement.
We conduct experiments on various Large Language Models (LLMs) with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions.
Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases.
arXiv Detail & Related papers (2024-01-23T11:25:34Z) - Enhancing Answer Selection in Community Question Answering with
Pre-trained and Large Language Models [0.9065034043031668]
We first propose the Question-Answer cross attention networks (QAN) with pre-trained models for answer selection.
We then utilize large language model (LLM) to perform answer selection with knowledge augmentation.
Experiments show that the QAN model state-of-the-art performance on two datasets, SemEval2015 and SemEval 2017.
arXiv Detail & Related papers (2023-11-29T10:24:50Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
We study the factuality of large language models (LLMs) in the context of answering questions that test current world knowledge.
We introduce FreshQA, a novel dynamic QA benchmark encompassing a diverse range of question and answer types.
We benchmark a diverse array of both closed and open-source LLMs under a two-mode evaluation procedure that allows us to measure both correctness and hallucination.
Motivated by these results, we present FreshPrompt, a simple few-shot prompting method that substantially boosts the performance of an LLM on FreshQA.
arXiv Detail & Related papers (2023-10-05T00:04:12Z) - FOLLOWUPQG: Towards Information-Seeking Follow-up Question Generation [38.78216651059955]
We introduce the task of real-world information-seeking follow-up question generation (FQG)
We construct FOLLOWUPQG, a dataset of over 3K real-world (initial question, answer, follow-up question)s collected from a forum layman providing Reddit-friendly explanations for open-ended questions.
In contrast to existing datasets, questions in FOLLOWUPQG use more diverse pragmatic strategies to seek information, and they also show higher-order cognitive skills.
arXiv Detail & Related papers (2023-09-10T11:58:29Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.