Disce aut Deficere: Evaluating LLMs Proficiency on the INVALSI Italian Benchmark
- URL: http://arxiv.org/abs/2406.17535v1
- Date: Tue, 25 Jun 2024 13:20:08 GMT
- Title: Disce aut Deficere: Evaluating LLMs Proficiency on the INVALSI Italian Benchmark
- Authors: Fabio Mercorio, Mario Mezzanzanica, Daniele Potertì, Antonio Serino, Andrea Seveso,
- Abstract summary: evaluating Large Language Models (LLMs) in languages other than English is crucial for ensuring their linguistic versatility, cultural relevance, and applicability in diverse global contexts.
We tackle this challenge by introducing a structured benchmark using the INVALSI tests, a set of well-established assessments designed to measure educational competencies across Italy.
- Score: 12.729687989535359
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to generate and manipulate human language, highlighting their potential across various applications. Evaluating LLMs in languages other than English is crucial for ensuring their linguistic versatility, cultural relevance, and applicability in diverse global contexts, thus broadening their usability and effectiveness. We tackle this challenge by introducing a structured benchmark using the INVALSI tests, a set of well-established assessments designed to measure educational competencies across Italy. Our study makes three primary contributions: Firstly, we adapt the INVALSI benchmark for automated LLM evaluation, which involves rigorous adaptation of the test format to suit automated processing while retaining the essence of the original tests. Secondly, we provide a detailed assessment of current LLMs, offering a crucial reference point for the academic community. Finally, we visually compare the performance of these models against human results. Additionally, researchers are invited to submit their models for ongoing evaluation, ensuring the benchmark remains a current and valuable resource.
Related papers
- A Novel Psychometrics-Based Approach to Developing Professional Competency Benchmark for Large Language Models [0.0]
We propose a comprehensive approach to benchmark development based on rigorous psychometric principles.
We make the first attempt to illustrate this approach by creating a new benchmark in the field of pedagogy and education.
We construct a novel benchmark guided by the Bloom's taxonomy and rigorously designed by a consortium of education experts trained in test development.
arXiv Detail & Related papers (2024-10-29T19:32:43Z) - From Text to Insight: Leveraging Large Language Models for Performance Evaluation in Management [6.70908766695241]
This study explores the potential of Large Language Models (LLMs), specifically GPT-4, to enhance objectivity in organizational task performance evaluations.
Our results suggest that GPT ratings are comparable to human ratings but exhibit higher consistency and reliability.
Our research suggests that while LLMs are capable of extracting meaningful constructs from text-based data, their scope is currently limited to specific forms of performance evaluation.
arXiv Detail & Related papers (2024-08-09T20:35:10Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language.
LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments.
We introduce Pairwise-preference Search (PAIRS), an uncertainty-guided search-based rank aggregation method that employs LLMs to conduct pairwise comparisons locally and efficiently ranks candidate texts globally.
arXiv Detail & Related papers (2024-03-25T17:11:28Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
Supervised fine-tuning (SFT), supervised instruction tuning (SIT) and in-context learning (ICL) are three alternative, de facto standard approaches to few-shot learning.
We present an extensive and systematic comparison of the three approaches, testing them on 6 high- and low-resource languages, three different NLU tasks, and a myriad of language and domain setups.
Our observations show that supervised instruction tuning has the best trade-off between performance and resource requirements.
arXiv Detail & Related papers (2024-03-04T10:48:13Z) - LLaMA Beyond English: An Empirical Study on Language Capability Transfer [49.298360366468934]
We focus on how to effectively transfer the capabilities of language generation and following instructions to a non-English language.
We analyze the impact of key factors such as vocabulary extension, further pretraining, and instruction tuning on transfer.
We employ four widely used standardized testing benchmarks: C-Eval, MMLU, AGI-Eval, and GAOKAO-Bench.
arXiv Detail & Related papers (2024-01-02T06:29:02Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
Large language model (LLM) has excellent performance and wide practical uses.
Existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios.
We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety.
Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system.
arXiv Detail & Related papers (2023-08-15T17:40:34Z) - Evaluating the Performance of Large Language Models on GAOKAO Benchmark [53.663757126289795]
This paper introduces GAOKAO-Bench, an intuitive benchmark that employs questions from the Chinese GAOKAO examination as test samples.
With human evaluation, we obtain the converted total score of LLMs, including GPT-4, ChatGPT and ERNIE-Bot.
We also use LLMs to grade the subjective questions, and find that model scores achieve a moderate level of consistency with human scores.
arXiv Detail & Related papers (2023-05-21T14:39:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.