FrenchToxicityPrompts: a Large Benchmark for Evaluating and Mitigating Toxicity in French Texts
- URL: http://arxiv.org/abs/2406.17566v1
- Date: Tue, 25 Jun 2024 14:02:11 GMT
- Title: FrenchToxicityPrompts: a Large Benchmark for Evaluating and Mitigating Toxicity in French Texts
- Authors: Caroline Brun, Vassilina Nikoulina,
- Abstract summary: Large language models (LLMs) are increasingly popular but are also prone to generating bias, toxic or harmful language.
We create and release FrenchToxicityPrompts, a dataset of 50K naturally occurring French prompts.
We evaluate 14 different models from four prevalent open-sourced families of LLMs against our dataset to assess their potential toxicity.
- Score: 13.470734853274587
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) are increasingly popular but are also prone to generating bias, toxic or harmful language, which can have detrimental effects on individuals and communities. Although most efforts is put to assess and mitigate toxicity in generated content, it is primarily concentrated on English, while it's essential to consider other languages as well. For addressing this issue, we create and release FrenchToxicityPrompts, a dataset of 50K naturally occurring French prompts and their continuations, annotated with toxicity scores from a widely used toxicity classifier. We evaluate 14 different models from four prevalent open-sourced families of LLMs against our dataset to assess their potential toxicity across various dimensions. We hope that our contribution will foster future research on toxicity detection and mitigation beyond Englis
Related papers
- PolygloToxicityPrompts: Multilingual Evaluation of Neural Toxic Degeneration in Large Language Models [27.996123856250065]
Existing toxicity benchmarks are overwhelmingly focused on English.
We introduce PolygloToxicityPrompts (PTP), the first large-scale multilingual toxicity evaluation benchmark of 425K naturally occurring prompts spanning 17 languages.
arXiv Detail & Related papers (2024-05-15T14:22:33Z) - Unveiling the Implicit Toxicity in Large Language Models [77.90933074675543]
The open-endedness of large language models (LLMs) combined with their impressive capabilities may lead to new safety issues when being exploited for malicious use.
We show that LLMs can generate diverse implicit toxic outputs that are exceptionally difficult to detect via simply zero-shot prompting.
We propose a reinforcement learning (RL) based attacking method to further induce the implicit toxicity in LLMs.
arXiv Detail & Related papers (2023-11-29T06:42:36Z) - Comprehensive Assessment of Toxicity in ChatGPT [49.71090497696024]
We evaluate the toxicity in ChatGPT by utilizing instruction-tuning datasets.
prompts in creative writing tasks can be 2x more likely to elicit toxic responses.
Certain deliberately toxic prompts, designed in earlier studies, no longer yield harmful responses.
arXiv Detail & Related papers (2023-11-03T14:37:53Z) - Facilitating Fine-grained Detection of Chinese Toxic Language:
Hierarchical Taxonomy, Resources, and Benchmarks [18.44630180661091]
Existing datasets lack fine-grained annotation of toxic types and expressions.
It is crucial to introduce lexical knowledge to detect the toxicity of posts.
In this paper, we facilitate the fine-grained detection of Chinese toxic language.
arXiv Detail & Related papers (2023-05-08T03:50:38Z) - Toxicity in Multilingual Machine Translation at Scale [3.4620477930009472]
We evaluate and analyze added toxicity when translating a large evaluation dataset (HOLISTICBIAS, over 472k sentences, covering 13 demographic axes) from English into 164 languages.
An automatic toxicity evaluation shows that added toxicity across languages varies from 0% to 5%.
The output languages with the most added toxicity tend to be low-resource ones, and the demographic axes with the most added toxicity include sexual orientation, gender and sex, and ability.
arXiv Detail & Related papers (2022-10-06T17:26:27Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
We investigate the effect of annotator identities (who) and beliefs (why) on toxic language annotations.
We consider posts with three characteristics: anti-Black language, African American English dialect, and vulgarity.
Our results show strong associations between annotator identity and beliefs and their ratings of toxicity.
arXiv Detail & Related papers (2021-11-15T18:58:20Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection.
We propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns.
Our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
arXiv Detail & Related papers (2021-06-14T08:49:52Z) - Challenges in Automated Debiasing for Toxic Language Detection [81.04406231100323]
Biased associations have been a challenge in the development of classifiers for detecting toxic language.
We investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection.
Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English)
arXiv Detail & Related papers (2021-01-29T22:03:17Z) - Toxic Language Detection in Social Media for Brazilian Portuguese: New
Dataset and Multilingual Analysis [4.251937086394346]
State-of-the-art BERT models were able to achieve 76% macro-F1 score using monolingual data in the binary case.
We show that large-scale monolingual data is still needed to create more accurate models.
arXiv Detail & Related papers (2020-10-09T13:05:19Z) - RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models [93.151822563361]
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment.
We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration.
arXiv Detail & Related papers (2020-09-24T03:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.