MotionBooth: Motion-Aware Customized Text-to-Video Generation
- URL: http://arxiv.org/abs/2406.17758v3
- Date: Tue, 29 Oct 2024 11:56:27 GMT
- Title: MotionBooth: Motion-Aware Customized Text-to-Video Generation
- Authors: Jianzong Wu, Xiangtai Li, Yanhong Zeng, Jiangning Zhang, Qianyu Zhou, Yining Li, Yunhai Tong, Kai Chen,
- Abstract summary: MotionBooth is a framework designed for animating customized subjects with precise control over both object and camera movements.
We efficiently fine-tune a text-to-video model to capture the object's shape and attributes accurately.
Our approach presents subject region loss and video preservation loss to enhance the subject's learning performance.
- Score: 44.41894050494623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present MotionBooth, an innovative framework designed for animating customized subjects with precise control over both object and camera movements. By leveraging a few images of a specific object, we efficiently fine-tune a text-to-video model to capture the object's shape and attributes accurately. Our approach presents subject region loss and video preservation loss to enhance the subject's learning performance, along with a subject token cross-attention loss to integrate the customized subject with motion control signals. Additionally, we propose training-free techniques for managing subject and camera motions during inference. In particular, we utilize cross-attention map manipulation to govern subject motion and introduce a novel latent shift module for camera movement control as well. MotionBooth excels in preserving the appearance of subjects while simultaneously controlling the motions in generated videos. Extensive quantitative and qualitative evaluations demonstrate the superiority and effectiveness of our method. Our project page is at https://jianzongwu.github.io/projects/motionbooth
Related papers
- TokenMotion: Decoupled Motion Control via Token Disentanglement for Human-centric Video Generation [7.900728371180723]
We present TokenMotion, the first DiT-based video diffusion framework that enables fine-grained control over camera motion.
Our approach introduces a unified modeling framework utilizing a decouple-and-fuse strategy, bridged by a human-aware dynamic mask.
Our work represents a significant advancement in controllable video generation, with particular relevance for creative production applications.
arXiv Detail & Related papers (2025-04-11T00:41:25Z) - Perception-as-Control: Fine-grained Controllable Image Animation with 3D-aware Motion Representation [21.87745390965703]
We introduce 3D-aware motion representation and propose an image animation framework, called Perception-as-Control, to achieve fine-grained collaborative motion control.
Specifically, we construct 3D-aware motion representation from a reference image, manipulate it based on interpreted user instructions, and perceive it from different viewpoints.
Our framework leverages the perception results as motion control signals, enabling it to support various motion-related video synthesis tasks in a unified and flexible way.
arXiv Detail & Related papers (2025-01-09T07:23:48Z) - VideoAnydoor: High-fidelity Video Object Insertion with Precise Motion Control [66.66226299852559]
VideoAnydoor is a zero-shot video object insertion framework with high-fidelity detail preservation and precise motion control.
To preserve the detailed appearance and meanwhile support fine-grained motion control, we design a pixel warper.
arXiv Detail & Related papers (2025-01-02T18:59:54Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.
We translate high-level user requests into detailed, semi-dense motion prompts.
We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - Reenact Anything: Semantic Video Motion Transfer Using Motion-Textual Inversion [9.134743677331517]
We propose a pre-trained image-to-video model to disentangle appearance from motion.
Our method, called motion-textual inversion, leverages our observation that image-to-video models extract appearance mainly from the (latent) image input.
By operating on an inflated motion-text embedding containing multiple text/image embedding tokens per frame, we achieve a high temporal motion granularity.
Our approach does not require spatial alignment between the motion reference video and target image, generalizes across various domains, and can be applied to various tasks.
arXiv Detail & Related papers (2024-08-01T10:55:20Z) - Image Conductor: Precision Control for Interactive Video Synthesis [90.2353794019393]
Filmmaking and animation production often require sophisticated techniques for coordinating camera transitions and object movements.
Image Conductor is a method for precise control of camera transitions and object movements to generate video assets from a single image.
arXiv Detail & Related papers (2024-06-21T17:55:05Z) - MotionFollower: Editing Video Motion via Lightweight Score-Guided Diffusion [94.66090422753126]
MotionFollower is a lightweight score-guided diffusion model for video motion editing.
It delivers superior motion editing performance and exclusively supports large camera movements and actions.
Compared with MotionEditor, the most advanced motion editing model, MotionFollower achieves an approximately 80% reduction in GPU memory.
arXiv Detail & Related papers (2024-05-30T17:57:30Z) - MotionMaster: Training-free Camera Motion Transfer For Video Generation [48.706578330771386]
We propose a novel training-free video motion transfer model, which disentangles camera motions and object motions in source videos.
Our model can effectively decouple camera-object motion and apply the decoupled camera motion to a wide range of controllable video generation tasks.
arXiv Detail & Related papers (2024-04-24T10:28:54Z) - Direct-a-Video: Customized Video Generation with User-Directed Camera Movement and Object Motion [34.404342332033636]
We introduce Direct-a-Video, a system that allows users to independently specify motions for multiple objects as well as camera's pan and zoom movements.
For camera movement, we introduce new temporal cross-attention layers to interpret quantitative camera movement parameters.
Both components operate independently, allowing individual or combined control, and can generalize to open-domain scenarios.
arXiv Detail & Related papers (2024-02-05T16:30:57Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
We introduce MotionCrafter, a one-shot instance-guided motion customization method.
MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model.
During training, a frozen base model provides appearance normalization, effectively separating appearance from motion.
arXiv Detail & Related papers (2023-12-08T16:31:04Z) - MotionCtrl: A Unified and Flexible Motion Controller for Video Generation [77.09621778348733]
Motions in a video primarily consist of camera motion, induced by camera movement, and object motion, resulting from object movement.
This paper presents MotionCtrl, a unified motion controller for video generation designed to effectively and independently control camera and object motion.
arXiv Detail & Related papers (2023-12-06T17:49:57Z) - Space-Time Diffusion Features for Zero-Shot Text-Driven Motion Transfer [27.278989809466392]
We present a new method for text-driven motion transfer - synthesizing a video that complies with an input text prompt describing the target objects and scene.
We leverage a pre-trained and fixed text-to-video diffusion model, which provides us with generative and motion priors.
arXiv Detail & Related papers (2023-11-28T18:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.