Why Line Search when you can Plane Search? SO-Friendly Neural Networks allow Per-Iteration Optimization of Learning and Momentum Rates for Every Layer
- URL: http://arxiv.org/abs/2406.17954v1
- Date: Tue, 25 Jun 2024 22:06:40 GMT
- Title: Why Line Search when you can Plane Search? SO-Friendly Neural Networks allow Per-Iteration Optimization of Learning and Momentum Rates for Every Layer
- Authors: Betty Shea, Mark Schmidt,
- Abstract summary: We introduce the class of SO-friendly neural networks, which include several models used in practice.
Performing a precise line search to set the step size has the same cost during full-batch training as using a fixed learning.
For the same cost a planesearch can be used to set both the learning and momentum rate on each step.
- Score: 9.849498498869258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the class of SO-friendly neural networks, which include several models used in practice including networks with 2 layers of hidden weights where the number of inputs is larger than the number of outputs. SO-friendly networks have the property that performing a precise line search to set the step size on each iteration has the same asymptotic cost during full-batch training as using a fixed learning. Further, for the same cost a planesearch can be used to set both the learning and momentum rate on each step. Even further, SO-friendly networks also allow us to use subspace optimization to set a learning rate and momentum rate for each layer on each iteration. We explore augmenting gradient descent as well as quasi-Newton methods and Adam with line optimization and subspace optimization, and our experiments indicate that this gives fast and reliable ways to train these networks that are insensitive to hyper-parameters.
Related papers
- OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural
Architecture Search [79.36688444492405]
Once-for-All (OFA) is a Neural Architecture Search (NAS) framework designed to address the problem of searching efficient architectures for devices with different resources constraints.
We aim to give one step further in the search for efficiency by explicitly conceiving the search stage as a multi-objective optimization problem.
arXiv Detail & Related papers (2023-03-23T21:30:29Z) - Decentralized Gossip-Based Stochastic Bilevel Optimization over
Communication Networks [42.76623191830371]
We propose a gossip-based distributed bilevel optimization algorithm.
Agents can solve both networked and outer problems in a single time.
Our algorithm achieves the state-of-the-art efficiency and test accuracy.
arXiv Detail & Related papers (2022-06-22T06:38:54Z) - Training Networks in Null Space of Feature Covariance for Continual
Learning [34.095874368589904]
We propose a novel network training algorithm called Adam-NSCL, which sequentially optimize network parameters in the null space of previous tasks.
We apply our approach to training networks for continual learning on benchmark datasets of CIFAR-100 and TinyImageNet.
arXiv Detail & Related papers (2021-03-12T07:21:48Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Gradient-only line searches to automatically determine learning rates
for a variety of stochastic training algorithms [0.0]
We study the application of the Gradient-Only Line Search that is Inexact (GOLS-I) to determine the learning rate schedule for a selection of popular neural network training algorithms.
GOLS-I's learning rate schedules are competitive with manually tuned learning rates, over seven optimization algorithms, three types of neural network architecture, 23 datasets and two loss functions.
arXiv Detail & Related papers (2020-06-29T08:59:31Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
Progressive Neural Network Learning is a class of algorithms that incrementally construct the network's topology and optimize its parameters based on the training data.
We propose to speed up this process by exploiting subsets of training data at each incremental training step.
Experimental results in object, scene and face recognition problems demonstrate that the proposed approach speeds up the optimization procedure considerably.
arXiv Detail & Related papers (2020-02-17T18:57:33Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.