EDEN: Empathetic Dialogues for English learning
- URL: http://arxiv.org/abs/2406.17982v2
- Date: Sat, 28 Sep 2024 22:18:44 GMT
- Title: EDEN: Empathetic Dialogues for English learning
- Authors: Li Siyan, Teresa Shao, Zhou Yu, Julia Hirschberg,
- Abstract summary: Student passion and perseverance, or grit, has been associated with language learning success.
Recent work establishes that as students perceive their English teachers to be more supportive, their grit improves.
Our experiment suggests that using adaptive empathetic feedback leads to higher perceived affective support.
- Score: 18.15602535467144
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Dialogue systems have been used as conversation partners in English learning, but few have studied whether these systems improve learning outcomes. Student passion and perseverance, or grit, has been associated with language learning success. Recent work establishes that as students perceive their English teachers to be more supportive, their grit improves. Hypothesizing that the same pattern applies to English-teaching chatbots, we create EDEN, a robust open-domain chatbot for spoken conversation practice that provides empathetic feedback. To construct EDEN, we first train a specialized spoken utterance grammar correction model and a high-quality social chit-chat conversation model. We then conduct a preliminary user study with a variety of strategies for empathetic feedback. Our experiment suggests that using adaptive empathetic feedback leads to higher perceived affective support. Furthermore, elements of perceived affective support positively correlate with student grit.
Related papers
- Towards Developmentally Plausible Rewards: Communicative Success as a Learning Signal for Interactive Language Models [49.22720751953838]
We propose a method for training language models in an interactive setting inspired by child language acquisition.<n>In our setting, a speaker attempts to communicate some information to a listener in a single-turn dialogue and receives a reward if communicative success is achieved.
arXiv Detail & Related papers (2025-05-09T11:48:36Z) - Leveraging Chain of Thought towards Empathetic Spoken Dialogue without Corresponding Question-Answering Data [33.85748258158527]
Empathetic dialogue is crucial for natural human-computer interaction.
Large language models (LLMs) have revolutionized dialogue generation by harnessing their powerful capabilities.
We propose a novel approach that circumvents the need for question-answering data.
arXiv Detail & Related papers (2025-01-19T04:10:53Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
Many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion.
We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations.
Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
arXiv Detail & Related papers (2024-11-07T21:37:51Z) - Exploring Knowledge Tracing in Tutor-Student Dialogues [53.52699766206808]
We present a first attempt at performing knowledge tracing (KT) in tutor-student dialogues.
We propose methods to identify the knowledge components/skills involved in each dialogue turn.
We then apply a range of KT methods on the resulting labeled data to track student knowledge levels over an entire dialogue.
arXiv Detail & Related papers (2024-09-24T22:31:39Z) - Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations [15.394018604836774]
We introduce a trial-and-demonstration (TnD) learning framework that incorporates three components: student trials, teacher demonstrations, and a reward conditioned on language competence.
Our experiments reveal that the TnD approach accelerates word acquisition for student models of equal or smaller numbers of parameters.
Our findings suggest that interactive language learning, with teacher demonstrations and student trials, can facilitate efficient word learning in language models.
arXiv Detail & Related papers (2024-05-22T16:57:02Z) - Using Adaptive Empathetic Responses for Teaching English [18.15602535467144]
We propose the task of negative emotion detection via audio, for recognizing empathetic feedback opportunities in language learning.
We then build the first spoken English-teaching chatbots with adaptive, empathetic feedback.
This feedback is synthesized through automatic prompt optimization of ChatGPT and is evaluated with English learners.
arXiv Detail & Related papers (2024-04-21T20:21:24Z) - Large Language Model based Situational Dialogues for Second Language Learning [7.450328495455734]
In second language learning, scenario-based conversation practice is important for language learners to achieve fluency in speaking.
To bridge this gap, we propose situational dialogue models for students to engage in conversational practice.
Our situational dialogue models are fine-tuned on large language models (LLMs), with the aim of combining the engaging nature of an open-ended conversation with the focused practice of scenario-based tasks.
arXiv Detail & Related papers (2024-03-29T06:43:55Z) - Curriculum-Driven Edubot: A Framework for Developing Language Learning Chatbots Through Synthesizing Conversational Data [23.168347070904318]
We present Curriculum-Driven EduBot, a framework for developing a chatbots that combines the interactive features of chatbots with the systematic material of English textbooks.
We begin by extracting pertinent topics from textbooks and using large language models to generate dialogues related to these topics.
arXiv Detail & Related papers (2023-09-28T19:14:18Z) - Facilitating Multi-turn Emotional Support Conversation with Positive
Emotion Elicitation: A Reinforcement Learning Approach [58.88422314998018]
Emotional support conversation (ESC) aims to provide emotional support (ES) to improve one's mental state.
Existing works stay at fitting grounded responses and responding strategies which ignore the effect on ES and lack explicit goals to guide emotional positive transition.
We introduce a new paradigm to formalize multi-turn ESC as a process of positive emotion elicitation.
arXiv Detail & Related papers (2023-07-16T09:58:44Z) - User Adaptive Language Learning Chatbots with a Curriculum [55.63893493019025]
We adapt lexically constrained decoding to a dialog system, which urges the dialog system to include curriculum-aligned words and phrases in its generated utterances.
The evaluation result demonstrates that the dialog system with curriculum infusion improves students' understanding of target words and increases their interest in practicing English.
arXiv Detail & Related papers (2023-04-11T20:41:41Z) - Structural Pre-training for Dialogue Comprehension [51.215629336320305]
We present SPIDER, Structural Pre-traIned DialoguE Reader, to capture dialogue exclusive features.
To simulate the dialogue-like features, we propose two training objectives in addition to the original LM objectives.
Experimental results on widely used dialogue benchmarks verify the effectiveness of the newly introduced self-supervised tasks.
arXiv Detail & Related papers (2021-05-23T15:16:54Z) - Reinforcement Learning for Emotional Text-to-Speech Synthesis with
Improved Emotion Discriminability [82.39099867188547]
Emotional text-to-speech synthesis (ETTS) has seen much progress in recent years.
We propose a new interactive training paradigm for ETTS, denoted as i-ETTS.
We formulate an iterative training strategy with reinforcement learning to ensure the quality of i-ETTS optimization.
arXiv Detail & Related papers (2021-04-03T13:52:47Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.