LLMs for Doctors: Leveraging Medical LLMs to Assist Doctors, Not Replace Them
- URL: http://arxiv.org/abs/2406.18034v1
- Date: Wed, 26 Jun 2024 03:08:24 GMT
- Title: LLMs for Doctors: Leveraging Medical LLMs to Assist Doctors, Not Replace Them
- Authors: Wenya Xie, Qingying Xiao, Yu Zheng, Xidong Wang, Junying Chen, Ke Ji, Anningzhe Gao, Xiang Wan, Feng Jiang, Benyou Wang,
- Abstract summary: We focus on tuning the Large Language Models to be medical assistants who collaborate with more experienced doctors.
We construct a Chinese medical dataset called DoctorFLAN to support the entire workflow of doctors.
We evaluate LLMs in doctor-oriented scenarios by constructing the DoctorFLAN-textittest containing 550 single-turn Q&A and DotaBench containing 74 multi-turn conversations.
- Score: 41.65016162783525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent success of Large Language Models (LLMs) has had a significant impact on the healthcare field, providing patients with medical advice, diagnostic information, and more. However, due to a lack of professional medical knowledge, patients are easily misled by generated erroneous information from LLMs, which may result in serious medical problems. To address this issue, we focus on tuning the LLMs to be medical assistants who collaborate with more experienced doctors. We first conduct a two-stage survey by inspiration-feedback to gain a broad understanding of the real needs of doctors for medical assistants. Based on this, we construct a Chinese medical dataset called DoctorFLAN to support the entire workflow of doctors, which includes 92K Q\&A samples from 22 tasks and 27 specialists. Moreover, we evaluate LLMs in doctor-oriented scenarios by constructing the DoctorFLAN-\textit{test} containing 550 single-turn Q\&A and DotaBench containing 74 multi-turn conversations. The evaluation results indicate that being a medical assistant still poses challenges for existing open-source models, but DoctorFLAN can help them significantly. It demonstrates that the doctor-oriented dataset and benchmarks we construct can complement existing patient-oriented work and better promote medical LLMs research.
Related papers
- The Potential of LLMs in Medical Education: Generating Questions and Answers for Qualification Exams [9.802579169561781]
Large language models (LLMs) can generate medical qualification exam questions and corresponding answers based on few-shot prompts.
The study found that LLMs, after using few-shot prompts, can effectively mimic real-world medical qualification exam questions.
arXiv Detail & Related papers (2024-10-31T09:33:37Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - Can LLMs Correct Physicians, Yet? Investigating Effective Interaction Methods in the Medical Domain [21.96129653695565]
Large Language Models (LLMs) can assist and potentially correct physicians in medical decision-making tasks.
We evaluate several LLMs, including Meditron, Llama2, and Mistral, to analyze the ability of these models to interact effectively with physicians across different scenarios.
arXiv Detail & Related papers (2024-03-29T16:59:13Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
Large language models (LLMs) have received substantial attention due to their capabilities for understanding and generating human language.
This review aims to provide a detailed overview of the development and deployment of LLMs in medicine.
arXiv Detail & Related papers (2023-11-09T02:55:58Z) - Augmenting Black-box LLMs with Medical Textbooks for Biomedical Question Answering (Published in Findings of EMNLP 2024) [48.17095875619711]
We present a system called LLMs Augmented with Medical Textbooks (LLM-AMT)
LLM-AMT integrates authoritative medical textbooks into the LLMs' framework using plug-and-play modules.
We found that medical textbooks as a retrieval corpus is proven to be a more effective knowledge database than Wikipedia in the medical domain.
arXiv Detail & Related papers (2023-09-05T13:39:38Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
Large language models (LLMs) can follow natural language instructions with human-level fluency.
evaluating LLMs on realistic text generation tasks for healthcare remains challenging.
We introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data.
arXiv Detail & Related papers (2023-08-27T12:24:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.