Charge and Spin Dynamics and Destabilization of Shallow Nitrogen-Vacancy Centers under UV and Blue Excitation
- URL: http://arxiv.org/abs/2406.18272v1
- Date: Wed, 26 Jun 2024 11:51:16 GMT
- Title: Charge and Spin Dynamics and Destabilization of Shallow Nitrogen-Vacancy Centers under UV and Blue Excitation
- Authors: Laura A. Völker, Konstantin Herb, Darin A. Merchant, Lorenzo Bechelli, Christian L. Degen, John M. Abendroth,
- Abstract summary: Shallow nitrogen-vacancy (NV) centers in diamond offer unique opportunities for studying photochemical reactions at the single-molecule level.
We analyze the charge and spin dynamics of NV centers exposed to the short-wavelength light required for photoexciting chemical species.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shallow nitrogen-vacancy (NV) centers in diamond offer unique opportunities for studying photochemical reactions at the single-molecule level, such as the photogeneration of radical pairs in proximal molecules. A prerequesite for such experimental schemes is the detailed understanding of the charge and spin dynamics of NV centers exposed to the short-wavelength light required for photoexciting chemical species. Here, we measure and analyze the charge and spin dynamics of shallow NV centers under 445 nm (blue) and 375 nm (UV) illumination. With blue excitation, we observe a power-dependent charge-state preparation accompanied by modest preservation of spin initialization fidelity. Under UV excitation, we find a power-independent charge-state preparation and no spin polarization. We further observe an irreversible aging of NV centers under prolonged exposure to UV, and to a lesser extent, blue laser excitation, which we attribute to formation of new electronic trap states. This aging manifests itself in a reduced charge stability and spin contrast, and is detrimental to the NV sensing performance. We evaluate the prospects and limitations of NV centers for probing photogenerated radical pairs based on experimentally measured sensitivities following blue and UV excitation, and outline the design rules for possible sensing schemes.
Related papers
- Rapid, in-situ neutralization of nitrogen- and silicon-vacancy centers in diamond using above-band-gap optical excitation [0.0]
We demonstrate the use of deep-ultraviolet (DUV) radiation to dynamically neutralize nitrogen- (NV) and silicon-vacancy (SiV) centers.
We first examine the conversion between the neutral and negatively charged NV states by correlating the variation of their respective spectra.
We then observe the time dynamics of bleaching and recharging of negatively charged SiV$-$ centers and observe an 80% reduction in SiV$-$ photoluminescence within a single 100-$mu$s DUV pulse.
arXiv Detail & Related papers (2024-08-29T21:43:33Z) - Resonant versus non-resonant spin readout of a nitrogen-vacancy center
in diamond under cryogenic conditions [0.0]
We examine the impact of spin-selective, narrow-band laser excitation on nitrogen-vacancy readout.
We demonstrate a more than four-fold improvement in sensitivity compared to that possible with non-resonant illumination.
These results open opportunities in the application of NV sensing to the investigation of condensed matter systems.
arXiv Detail & Related papers (2023-12-05T17:27:08Z) - Dopant-assisted stabilization of negatively charged single
nitrogen-vacancy centers in phosphorus-doped diamond at low temperatures [0.0]
Charge state instabilities have been a bottleneck for the implementation of solid-state spin systems.
Here we investigate the stabilization of negatively charged nitrogen-vacancy centers in phosphorus-doped diamond at liquid helium temperatures.
arXiv Detail & Related papers (2023-05-24T13:53:10Z) - Temperature dependence of photoluminescence intensity and spin contrast
in nitrogen-vacancy centers [0.0]
We report on measurements of the photoluminescence (PL) properties of single nitrogen-vacancy (NV) centers in diamond at temperatures between 4-300 K.
We observe a strong reduction of the PL intensity and spin contrast between ca. 10-100 K that recovers to high levels below and above.
We develop a comprehensive model based on spin mixing and orbital hopping in the electronic excited state that quantitatively explains the observations.
arXiv Detail & Related papers (2023-01-12T15:39:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Low temperature photo-physics of single NV centers in diamond [43.55994393060723]
We investigate the magnetic field dependent photo-physics of Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions.
We observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NV's ground state spin.
Our results offer new insights into the structure of the NVs' excited states and a new tool for their effective characterization.
arXiv Detail & Related papers (2021-05-17T18:00:02Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z) - Nitrogen-vacancy defect emission spectra in the vicinity of an
adjustable silver mirror [62.997667081978825]
Optical emitters of quantum radiation in the solid state are important building blocks for emerging technologies.
We experimentally study the emission spectrum of an ensemble of nitrogen-vacancy defects implanted around 8nm below the planar diamond surface.
arXiv Detail & Related papers (2020-03-31T10:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.